Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2

被引:223
作者
Bhide, Amrtha [1 ]
Hofmann, Jonas [1 ]
Duerr, Anna Katharina [2 ]
Janek, Juergen [1 ]
Adelhelm, Philipp [1 ]
机构
[1] Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[2] BASF SE, D-67056 Ludwigshafen, Germany
关键词
LITHIUM-ION; ANODE MATERIAL; LIQUID ELECTROLYTES; CATHODE MATERIAL; RATE CAPABILITY; CELL CHEMISTRY; INSERTION; ELECTRODES; INTERCALATION; PERFORMANCE;
D O I
10.1039/c3cp53077a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study compares the physico-chemical properties of non-aqueous liquid electrolytes based on NaPF6, NaClO4 and NaCF3SO3 salts in the binary mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). The ionic conductivity of the electrolytes is determined as a function of salt concentration and temperature. It is found that the electrolytes containing NaClO4 and NaPF6 exhibit ionic conductivities ranging from 5 mS cm (- 1) to 7 mS cm (-1) at ambient temperature. The electrochemical stability window of the different electrolytes is studied by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements with respect to a variety of working electrodes (WE) such as glassy carbon (GC), graphite and a carbon gas diffusion layer (GDL). Electrolytes containing NaPF6 and NaClO4 are found to be electrochemically stable with respect to GC and GDL electrodes up to 4.5 V vs. Na/Na+, with some side reactions starting from around 3.0 V for the latter salt. The results further show that aluminium is preferred over different steels as a cathode current collector. Copper is stable up to a potential of 3.5 V vs. Na/Na+. In view of practical Na-ion battery systems, the electrolytes are electrochemically tested with Na0.7CoO2 as a positive electrode. It is inferred that the electrolyte NaPF6-EC: DMC is favorable for the formation of a stable surface film and the reversibility of the above cathode material.
引用
收藏
页码:1987 / 1998
页数:12
相关论文
共 73 条
[1]  
Abraham K. M., 1990, ELECTROCHEMICAL SOC, VPV 90-5, P1
[2]   INTERCALATION POSITIVE ELECTRODES FOR RECHARGEABLE SODIUM CELLS [J].
ABRAHAM, KM .
SOLID STATE IONICS, 1982, 7 (03) :199-212
[3]   Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries [J].
Alcántara, R ;
Lavela, P ;
Ortiz, GF ;
Tirado, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A222-A225
[4]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[5]   Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C [J].
Alcántara, R ;
Mateos, JMJ ;
Tirado, JL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (02) :A201-A205
[6]   Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Madhavi, Srinivasan ;
Liu, Hua-Kun .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (51) :14326-14346
[7]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[8]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[9]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[10]   Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery [J].
Bhide, Amrtha ;
Hariharan, K. .
SOLID STATE IONICS, 2011, 192 (01) :360-363