The gravitationally consistent sea- level fingerprint of future terrestrial ice loss

被引:47
作者
Spada, G. [1 ]
Bamber, J. L. [2 ]
Hurkmans, R. T. W. L. [2 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Base & Fondamenti DiSBeF, Urbino, Italy
[2] Univ Bristol, Bristol Glaciol Ctr, Bristol BS8 1TH, Avon, England
关键词
MASS-BALANCE; RISE;
D O I
10.1029/2012GL053000
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We solve the sea-level equation to investigate the pattern of the gravitationally self-consistent sea-level variations (fingerprints) corresponding to modeled scenarios of future terrestrial ice melt. These were obtained from separate ice dynamics and surface mass balance models for the Greenland and Antarctic ice sheets and by a regionalized mass balance model for glaciers and ice caps. For our mid-range scenario, the ice melt component of total sea-level change attains its largest amplitude in the equatorial oceans, where we predict a cumulative sea-level rise of similar to 25 cm and rates of change close to 3mm/yr from ice melt alone by 2100. According to our modeling, in low-elevation densely populated coastal zones, the gravitationally consistent sea-level variations due to continental ice loss will range between 50 and 150% of the global mean. This includes the effects of glacial-isostatic adjustment, which mostly contributes across the lateral forebulge regions in North America. While the mid range ocean-averaged elastic-gravitational sea-level variations compare with those associated with thermal expansion and ocean circulation, their combination shows a complex regional pattern, where the former component dominates in the Equatorial Pacific Ocean and the latter in the Arctic Ocean. Citation: Spada G., J. L. Bamber, and R. T. W. L. Hurkmans (2012), The gravitationally consistent sea-level fingerprint of future terrestrial ice loss, Geophys. Res. Lett., 40, 482-486, doi:10.1029/2012GL053000.
引用
收藏
页码:482 / 486
页数:5
相关论文
共 22 条
[1]   A Simple Law for Ice-Shelf Calving [J].
Alley, Richard B. ;
Horgan, Huw J. ;
Joughin, Ian ;
Cuffey, Kurt M. ;
Dupont, Todd K. ;
Parizek, Byron R. ;
Anandakrishnan, Sridhar ;
Bassis, Jeremy .
SCIENCE, 2008, 322 (5906) :1344-1344
[2]   The sea level fingerprint of recent ice mass fluxes [J].
Bamber, J. ;
Riva, R. .
CRYOSPHERE, 2010, 4 (04) :621-627
[3]   Global sea rise: A redetermination [J].
Douglas, BC .
SURVEYS IN GEOPHYSICS, 1997, 18 (2-3) :279-292
[4]   POSTGLACIAL SEA-LEVEL [J].
FARRELL, WE ;
CLARK, JA .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1976, 46 (03) :647-667
[5]   Reconstruction of the 1979-2006 Greenland ice sheet surface mass balance using the regional climate model MAR [J].
Fettweis, X. .
CRYOSPHERE, 2007, 1 (01) :21-40
[6]  
Giesen R.H., 2012, The Cryosphere Discuss, V6, P1445
[7]   A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling [J].
Lenaerts, J. T. M. ;
van den Broeke, M. R. ;
van de Berg, W. J. ;
van Meijgaard, E. ;
Munneke, P. Kuipers .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[8]   The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones [J].
McGranahan, Gordon ;
Balk, Deborah ;
Anderson, Bridget .
ENVIRONMENT AND URBANIZATION, 2007, 19 (01) :17-37
[9]  
Meehl GA, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P747
[10]   Postglacial sea-level change on a rotating Earth [J].
Milne, GA ;
Mitrovica, JX .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 133 (01) :1-19