Membrane biogenesis of subunit II of cytochrome bo oxidase:: Contrasting requirements for insertion of N-terminal and C-terminal domains

被引:69
作者
Celebi, N
Yi, L
Facey, SJ
Kuhn, A
Dalbey, RE [1 ]
机构
[1] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA
[2] Univ Hohenheim, Inst Microbiol & Mol Biol, D-70599 Stuttgart, Germany
关键词
YidC; Oxa1; membrane protein insertion; CyoA; membrane insertase;
D O I
10.1016/j.jmb.2006.01.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The membrane assembly of the respiratory complexes requires the membrane insertases Oxa1 in mitochondria and YidC in bacteria. Oxa1 is responsible for the insertion of the mitochondrial cytochrome c oxidase subunit II (CoxII). Here, we investigated whether YidC, the bacterial Oxa1 homolog, plays a crucial role in the assembly of the bacterial subunit II (CyoA) of cytochrome bo oxidase. CyoA spans the membrane twice and is made with a cleavable signal peptide. We find that translocation of the short N-terminal domain of CyoA is YidC-dependent. In contrast, both the SecA/SecYEG complex and YidC are required for translocation of the large C-terminal domain. By studying the N-terminal domain of CyoA alone, we find that translocation is unaffected when SecE is depleted, suggesting that the YidC insertase on its own catalyzes membrane insertion of the N-terminal region of CyoA. Strikingly, we find that the translocation of the N-terminal domain is a prerequisite for translocation of the C-terminal domain in the full-length CyoA protein because translocation of the large C-terminal domain alone in a truncated CyoA derivative was observed in the absence of YidC. This work shows that the distinct domains of CyoA have different translocation requirements (YidC only and Sec/YidC) and confirms that the membrane biogenesis of subunit II of cytochrome oxidase in bacteria and mitochondria have conserved features. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1428 / 1436
页数:9
相关论文
共 40 条
[1]   The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase [J].
Altamura, N ;
Capitanio, N ;
Bonnefoy, N ;
Papa, S ;
Dujardin, G .
FEBS LETTERS, 1996, 382 (1-2) :111-115
[2]   PET1402, A NUCLEAR GENE REQUIRED FOR PROTEOLYTIC PROCESSING OF CYTOCHROME-OXIDASE SUBUNIT-2 IN YEAST [J].
BAUER, M ;
BEHRENS, M ;
ESSER, K ;
MICHAELIS, G ;
PRATJE, E .
MOLECULAR & GENERAL GENETICS, 1994, 245 (03) :272-278
[3]   OXA1, A SACCHAROMYCES-CEREVISIAE NUCLEAR GENE WHOSE SEQUENCE IS CONSERVED FROM PROKARYOTES TO EUKARYOTES CONTROLS CYTOCHROME-OXIDASE BIOGENESIS [J].
BONNEFOY, N ;
CHALVET, F ;
HAMEL, P ;
SLONIMSKI, PP ;
DUJARDIN, G .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 239 (02) :201-212
[4]   THE TRANSLOCATION OF NEGATIVELY CHARGED RESIDUES ACROSS THE MEMBRANE IS DRIVEN BY THE ELECTROCHEMICAL POTENTIAL - EVIDENCE FOR AN ELECTROPHORESIS-LIKE MEMBRANE TRANSFER MECHANISM [J].
CAO, GQ ;
KUHN, A ;
DALBEY, RE .
EMBO JOURNAL, 1995, 14 (05) :866-875
[5]   Involvement of SecDF and YidC in the membrane insertion of M13 procoat mutants [J].
Chen, MY ;
Xie, K ;
Yuan, JJ ;
Yi, L ;
Facey, SJ ;
Pradel, N ;
Wu, LF ;
Kuhn, A ;
Dalbey, RE .
BIOCHEMISTRY, 2005, 44 (31) :10741-10749
[6]   Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion [J].
Chen, MY ;
Samuelson, JC ;
Jiang, FL ;
Muller, M ;
Kuhn, A ;
Dalbey, RE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (10) :7670-7675
[7]  
CHEPURI V, 1990, J BIOL CHEM, V265, P12978
[8]   YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins [J].
Dalbey, RE ;
Kuhn, A .
JOURNAL OF CELL BIOLOGY, 2004, 166 (06) :769-774
[9]  
DALBEY RE, 1986, J BIOL CHEM, V261, P3844
[10]   Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli [J].
de Gier, JWL ;
Scotti, PA ;
Sääf, A ;
Valent, QA ;
Kuhn, A ;
Luirink, J ;
von Heijne, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14646-14651