Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula

被引:174
作者
Pohnert, G [1 ]
机构
[1] Max Planck Inst Chem Okol, D-07745 Jena, Germany
关键词
D O I
10.1104/pp.010974
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The activation of oxylipin-based chemical defense in the diatom Thalassiosira rotula is initiated by phospholipases that act immediately after cell damage. This lipase activity is responsible for the preferential release of free morio- and polyunsaturated fatty acids. Among these, eicosatetraenoic- and eicosapentaenoic acid are further converted by lipoxygenases to reactive defensive metabolites such as the antiproliferative alpha,beta,gamma,delta-unsaturated aldehydes 2,4-decadienal and 2,4,7-decatrienal. We show that mainly saturated free fatty acids are present in the intact diatom T. rotula, whereas the amount of free polyunsaturated eicosanoids is drastically increased in the first minutes after wounding. Using fluorescent probes, the main enzyme activity responsible for initiation of the aldehyde-generating lipase/lipoxygenase/hydroperoxide lyase cascade was characterized as a phospholipase A.. All enzymes involved in this specific defensive reaction are active in seawater over several minutes. Thus, the mechanism allows the unicellular algae to overcome restrictions arising out of potential dilution of defensive metabolites. Only upon predation are high local concentrations of aldehydes formed in the vicinity of the herbivores, whereas in times of low stress, cellular resources can be invested in the formation of eicosanoid-rich phospholipids. In contrast to higher plants, which use lipases acting on galactolipids to release C18 fatty acids for production of leaf-volatile aldehydes, diatoms rely on phospholipids and the transformation of C20 fatty acids to form 2,4-decadienal and 2,4,7-decatrienal as an activated defense.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 33 条
[1]   Strong seasonality in phytoplankton cell lysis in the NW Mediterranean littoral [J].
Agustí, S ;
Duarte, CM .
LIMNOLOGY AND OCEANOGRAPHY, 2000, 45 (04) :940-947
[2]   Enantioselective α-hydroperoxylation of long-chain fatty acids with crude enzyme of marine green alga Ulva pertusa [J].
Akakabe, Y ;
Matsui, K ;
Kajiwara, T .
TETRAHEDRON LETTERS, 1999, 40 (06) :1137-1140
[3]   POSITIONAL DISTRIBUTION OF FATTY-ACIDS IN LIPIDS OF THE MARINE DIATOM PHAEODACTYLUM-TRICORNUTUM [J].
ARAO, T ;
KAWAGUCHI, A ;
YAMADA, M .
PHYTOCHEMISTRY, 1987, 26 (09) :2573-2576
[4]   The paradox of diatom-copepod interactions [J].
Ban, SH ;
Burns, C ;
Castel, J ;
Chaudron, Y ;
Christou, E ;
Escribano, R ;
Umani, SF ;
Gasparini, S ;
Ruiz, FG ;
Hoffmeyer, M ;
Ianora, A ;
Kang, HK ;
Laabir, M ;
Lacoste, A ;
Miralto, A ;
Ning, XR ;
Poulet, S ;
Rodriguez, V ;
Runge, J ;
Shi, JX ;
Starr, M ;
Uye, S ;
Wang, YJ .
MARINE ECOLOGY PROGRESS SERIES, 1997, 157 :287-293
[5]   REASSESSMENT OF LIPID-COMPOSITION OF THE DIATOM, SKELETONEMA-COSTATUM [J].
BERGE, JP ;
GOUYGOU, JP ;
DUBACQ, JP ;
DURAND, P .
PHYTOCHEMISTRY, 1995, 39 (05) :1017-1021
[6]   Phytooxylipins and plant defense reactions [J].
Blée, E .
PROGRESS IN LIPID RESEARCH, 1998, 37 (01) :33-72
[7]   Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana [J].
Brown, MR ;
Dunstan, GA ;
Norwood, SJ ;
Miller, KA .
JOURNAL OF PHYCOLOGY, 1996, 32 (01) :64-73
[8]   Lipid class and fatty acid composition of Pseudo-nitzschia multiseries and Pseudo-nitzschia pungens and effects of lipolytic enzyme deactivation [J].
Budge, SM ;
Parrish, CC .
PHYTOCHEMISTRY, 1999, 52 (04) :561-566
[9]   Activation of phospholipase a by plant defense elicitors [J].
Chandra, S ;
Heinstein, PF ;
Low, PS .
PLANT PHYSIOLOGY, 1996, 110 (03) :979-986
[10]   Phospholipase activity during plant growth and development and in response to environmental stress [J].
Chapman, KD .
TRENDS IN PLANT SCIENCE, 1998, 3 (11) :419-426