Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process

被引:289
作者
Ishida, Hiroyuki [1 ]
Yoshimoto, Kohki [2 ]
Izumi, Masanori [1 ]
Reisen, Daniel [3 ]
Yano, Yuichi [1 ]
Makino, Amane [1 ]
Ohsumi, Yoshinori [2 ]
Hanson, Maureen R. [3 ]
Mae, Tadahiko [1 ]
机构
[1] Tohoku Univ, Grad Sch Agr Sci, Dept Appl Plant Sci, Aoba Ku, Sendai, Miyagi 9818555, Japan
[2] Natl Inst Basic Biol, Dept Cell Biol, Myodaiji, Okazaki, Japan
[3] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
关键词
D O I
10.1104/pp.108.122770
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
During senescence and at times of stress, plants can mobilize needed nitrogen from chloroplasts in leaves to other organs. Much of the total leaf nitrogen is allocated to the most abundant plant protein, Rubisco. While bulk degradation of the cytosol and organelles in plants occurs by autophagy, the role of autophagy in the degradation of chloroplast proteins is still unclear. We have visualized the fate of Rubisco, stroma-targeted green fluorescent protein (GFP) and DsRed, and GFP-labeled Rubisco in order to investigate the involvement of autophagy in the mobilization of stromal proteins to the vacuole. Using immunoelectron microscopy, we previously demonstrated that Rubisco is released from the chloroplast into Rubisco-containing bodies (RCBs) in naturally senescent leaves. When leaves of transgenic Arabidopsis (Arabidopsis thaliana) plants expressing stroma-targeted fluorescent proteins were incubated with concanamycin A to inhibit vacuolar H+-ATPase activity, spherical bodies exhibiting GFP or DsRed fluorescence without chlorophyll fluorescence were observed in the vacuolar lumen. Double-labeled immunoelectron microscopy with anti-Rubisco and anti-GFP antibodies confirmed that the fluorescent bodies correspond to RCBs. RCBs could also be visualized using GFP-labeled Rubisco directly. RCBs were not observed in leaves of a T-DNA insertion mutant in ATG5, one of the essential genes for autophagy. Stroma-targeted DsRed and GFP-ATG8 fusion proteins were observed together in autophagic bodies in the vacuole. We conclude that Rubisco and stroma-targeted fluorescent proteins can be mobilized to the vacuole through an ATG gene-dependent autophagic process without prior chloroplast destruction.
引用
收藏
页码:142 / 155
页数:14
相关论文
共 75 条
[1]   Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4 [J].
Acevedo-Hernández, GJ ;
León, P ;
Herrera-Estrella, LR .
PLANT JOURNAL, 2005, 43 (04) :506-519
[2]   Numerous and highly developed tubular projections from plastids observed in Tobacco epidermal cells [J].
Arimura, S ;
Hirai, A ;
Tsutsumi, N .
PLANT SCIENCE, 2001, 160 (03) :449-454
[3]   Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways [J].
Asai, T ;
Stone, JM ;
Heard, JE ;
Kovtun, Y ;
Yorgey, P ;
Sheen, J ;
Ausubel, FM .
PLANT CELL, 2000, 12 (10) :1823-1835
[4]   Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: Control by the supply of mitochondria with respiratory substrates [J].
Aubert, S ;
Gout, E ;
Bligny, R ;
MartyMazars, D ;
Barrieu, F ;
Alabouvette, J ;
Marty, F ;
Douce, R .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1251-1263
[5]   The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1 [J].
Barth, C ;
Moeder, W ;
Klessig, DF ;
Conklin, PL .
PLANT PHYSIOLOGY, 2004, 134 (04) :1784-1792
[6]   Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p [J].
Barth, H ;
Meiling-Wesse, K ;
Epple, UD ;
Thumm, M .
FEBS LETTERS, 2001, 508 (01) :23-28
[7]   Autophagy in development and stress responses of plants [J].
Bassham, DC ;
Laporte, M ;
Marty, F ;
Moriyasu, Y ;
Ohsumi, Y ;
Olsen, LJ ;
Yoshimoto, K .
AUTOPHAGY, 2006, 2 (01) :2-11
[8]   ENDOPEPTIDASE AND CARBOXYPEPTIDASE ENZYMES OF VACUOLES PREPARED FROM MESOPHYLL PROTOPLASTS OF THE PRIMARY LEAF OF WHEAT SEEDLINGS [J].
BHALLA, PL ;
DALLING, MJ .
JOURNAL OF PLANT PHYSIOLOGY, 1986, 122 (04) :289-302
[9]   Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat [J].
Chiba, A ;
Ishida, H ;
Nishizawa, NK ;
Makino, A ;
Mae, T .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (09) :914-921
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743