The paper describes recent results from our relatively new program to perform detailed studies of the catalytic properties of metal-oxide materials; in particular, to effect a determination of the active catalytic site(s) and the mechanism for reactions over this especially important class of heterogeneous catalysts. Issues of structure-sensitivity, poisoning and promotion, and competing reaction mechanisms are critical questions that need to be addressed in a detailed manner for catalysis by oxides. As just one important example, both surface (Langmui-Hinshelwood) and direct (Eley-Rideal) reaction mechanisms have been proposed for the selective catalytic reduction (SCR) reaction of nitrogen oxides (NOx) over vanadia/titania catalysts. For this program, we are using a number of unique, state-of-the-art capabilities available in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory; for example, the first molecular beam epitaxy (MBE) system dedicated to the growth of model metal-oxide films, and a unique moderate-pressure catalytic reactor/surface science apparatus. We describe the growth, characterization, and water adsorption properties of a thin Fe3O4(0 0 1) him grown on a lattice-matched MgO(0 0 1) substrate. Because our moderate pressure catalysis studies are preliminary at this point, we instead describe our previous results on the CO oxidation reaction over a Ru(0 0 0 1) model catalyst to demonstrate the utility of the experimental approach. We specifically discuss the possibility that this reaction occurs by an Eley-Rideal mechanism. (C) 1999 Elsevier Science B.V. All rights reserved.