Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces

被引:52
作者
Xu, F. J. [1 ,2 ]
Li, H. Z. [3 ]
Li, J. [2 ,3 ]
Teo, Y. H. Eric [4 ]
Zhu, C. X. [4 ]
Kang, E. T. [1 ]
Neoh, K. G. [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
[2] Natl Univ Singapore, Div Bioengn, Singapore 117602, Singapore
[3] Inst Mat Res & Engn, Singapore 117602, Singapore
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore
关键词
Micropatterning; Protein; Biosensor; ATRP; PEG;
D O I
10.1016/j.bios.2008.06.055
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micro patterned Si(I 0 0) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:773 / 780
页数:8
相关论文
共 25 条
[11]   Patterning proteins and cells using soft lithography [J].
Kane, RS ;
Takayama, S ;
Ostuni, E ;
Ingber, DE ;
Whitesides, GM .
BIOMATERIALS, 1999, 20 (23-24) :2363-2376
[12]   Lithographic techniques and surface chemistries for the fabrication of PEG-passivated protein microarrays [J].
Kannan, B ;
Castelino, K ;
Chen, FF ;
Majumdar, A .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (10) :1960-1967
[13]  
KATJA B, 2004, J SEP SCI, V27, P811
[14]   Protein patterning on silicon-based surface using background hydrophobic thin film [J].
Lee, CS ;
Lee, SH ;
Park, SS ;
Kim, YK ;
Kim, BG .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (04) :437-444
[15]   Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide) [J].
Lin, CC ;
Co, CC ;
Ho, CC .
BIOMATERIALS, 2005, 26 (17) :3655-3662
[16]   Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization [J].
Ma, HW ;
Li, DJ ;
Sheng, X ;
Zhao, B ;
Chilkoti, A .
LANGMUIR, 2006, 22 (08) :3751-3756
[17]   Visualization of micropatterned complex biosensor sensing chemistries by means of scanning electrochemical microscopy [J].
Niculescu, M ;
Gáspár, S ;
Schulte, A ;
Csöregi, E ;
Schuhmann, W .
BIOSENSORS & BIOELECTRONICS, 2004, 19 (10) :1175-1184
[18]   RGD - Functionalized polymer brushes as substrates for the integrin specific adhesion of human umbilical vein endothelial cells [J].
Tugulu, Stefano ;
Silacci, Paolo ;
Stergiopulos, Nikolaos ;
Klok, Harm-Anton .
BIOMATERIALS, 2007, 28 (16) :2536-2546
[19]   Highly selective protein patterning on gold-silicon substrates for biosensor applications [J].
Veiseh, M ;
Zareie, MH ;
Zhang, MQ .
LANGMUIR, 2002, 18 (17) :6671-6678
[20]   Nanoparticle-assisted micropatterning of active proteins on solid substrate [J].
Wang, C ;
Zhang, Y ;
Seng, HS ;
Ngo, LL .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (08) :1638-1643