The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana:: 1.: Characterization with APRR1-overexpressing plants

被引:180
作者
Makino, S [1 ]
Matsushika, A [1 ]
Kojima, M [1 ]
Yamashino, T [1 ]
Mizuno, T [1 ]
机构
[1] Nagoya Univ, Sch Agr, Mol Microbiol Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
Arabidopsis; circadian rhythm; clock components; transgenic plants;
D O I
10.1093/pcp/pcf005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Several Arabidopsis genes have been proposed to encode potential clock-associated components, including the Myb-related CCA1 and LHY transcription factors and a member of the novel family of pseudo response regulators (APRR1/TOC1). We previously showed that mRNAs of the APRR1/TOC1 family of genes start accumulating after dawn rhythmically and sequentially at approximately 2 h intervals in the order: APRR9-->APRR7-->APRR5-->APRR3 -->APRR1/TOC1. Here we constructed APRR1-overexpressing (APRR1-ox) plants, and examined certain circadian profiles for APRRs, CCA1, LHY, GI, CCR2, and CAB2. The free-running circadian rhythms of the APRR1/TOC1 family of genes, including APRR1, were dampened in APRR1-ox plants. In particular, the light-inducible expression of APRR9 was severely repressed in APRR1-ox plants, suggesting that there is a negative APRR1-->APRR9 regulation. The free-running robust rhythm of CAB2 was also dampened in APRR1-ox. The circadian profiles of potential clock-associated genes, CCA1, LHY, GI, and CCR2 were all markedly altered in APRR1-ox, each in characteristic fashion. To gain further insight into the molecular function of APRR1, we then identified a novel Myc-related bHLH transcription factor, which physically associated with APRR1. This protein (named PIL1) is similar in its amino acid sequence to PIF3, which has been identified as a phytochrome-interacting transcription factor. These results are discussed in relation to the current idea that APRR1 (TOC1) plays a role within, or close to, the Arabidopsis central oscillator.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 51 条