Trypanosomal antioxidants and emerging aspects of redox regulation in the trypanosomatids

被引:25
作者
Steenkamp, DJ [1 ]
机构
[1] Univ Cape Town, Sch Med, Dept Lab Med, Div Chem Pathol, ZA-7925 Observatory, South Africa
关键词
D O I
10.1089/152308602753625906
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Leishmania and Trypanosoma are two genera of the protozoal Order Kinetoplastida that cause widespread diseases of humans and their lifestock. The production of reactive oxygen and nitrogen intermediates by the host plays an important role in the control of infections by these organisms. Signal transduction and its redox regulation have not been studied in any depth in trypanosomatids, but homologs of the redox-sensitive signal transduction machinery of other eukaryotes have been recognized. These include homologs of activator protein-1, human apurinic endonuclease 1 (Ref-1) endonuclease, iron-responsive protein, protein kinases, and phosphatases. The detoxification of peroxide is catalyzed by a trypanothione-dependent system that has no counterpart in mammals, and thus ranks as one of the biochemical peculiarities of trypanosomatids. There is substantial evidence that trypanothione is essential for the survival of Trypanosoma brucei and for the virulence of Leishmania spp. Apart from trypanothione and its precursors, trypanosomatids also possess significant amounts of N-1-methyl-4-mercaptohistidine or ovothiol A, but its function in the trypanosomatids is not presently understood. The biosynthesis of ovothiol A in Crithidia fasciculata proceeds by addition of sulfur from cysteine to histidine to form 4-mercaptohistidine. S-(4'-L-Histidyl)-L-cysteine sulfoxide is the transsulfuration intermediate. 4-Mercaptohistidine is subsequently methylated with S-adenosylmethionine as the likely methyl donor.
引用
收藏
页码:105 / 121
页数:17
相关论文
共 111 条
[1]   Oxidative stress and gene regulation [J].
Allen, RG ;
Tresini, M .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (03) :463-499
[2]   The high resolution crystal structure of recombinant Crithidia fasciculata tryparedoxin-I [J].
Alphey, MS ;
Leonard, GA ;
Gourley, DG ;
Tetaud, E ;
Fairlamb, AH ;
Hunter, WN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (36) :25613-25622
[3]   The structure of reduced tryparedoxin peroxidase reveals a decamer and insight into reactivity of 2Cys-peroxiredoxins [J].
Alphey, MS ;
Bond, CS ;
Tetaud, E ;
Fairlamb, AH ;
Hunter, WN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :903-916
[4]   Ovothiol and trypanothione as antioxidants in trypanosomatids [J].
Ariyanayagam, MR ;
Fairlamb, AH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 115 (02) :189-198
[5]   INHIBITION OF GLUTATHIONE SYNTHESIS AS A CHEMOTHERAPEUTIC STRATEGY FOR TRYPANOSOMIASIS [J].
ARRICK, BA ;
GRIFFITH, OW ;
CERAMI, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1981, 153 (03) :720-725
[6]   Antiperoxide effect of S-allyl cysteine sulfoxide, an insulin secretagogue, in diabetic rats [J].
Augusti, KT ;
Sheela, CG .
EXPERIENTIA, 1996, 52 (02) :115-119
[7]  
Avila Jose Luis, 1992, V18, P189
[8]   THE ARABIDOPSIS-THALIANA APURINIC ENDONUCLEASE ARP REDUCES HUMAN TRANSCRIPTION FACTORS FOS AND JUN [J].
BABIYCHUK, E ;
KUSHNIR, S ;
VANMONTAGU, M ;
INZE, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :3299-3303
[9]   SUBSTRATE INTERACTIONS BETWEEN TRYPANOTHIONE REDUCTASE AND N(1)-GLUTATHIONYLSPERMIDINE DISULFIDE AT 0.28-NM RESOLUTION [J].
BAILEY, S ;
SMITH, K ;
FAIRLAMB, AH ;
HUNTER, WN .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 213 (01) :67-75
[10]   Antioxidant actions of ovothiol-derived 4-mercaptoimidazoles: glutathione peroxidase activity and protection against peroxynitrite-induced damage [J].
Bailly, F ;
Zoete, V ;
Vamecq, J ;
Catteau, JP ;
Bernier, JL .
FEBS LETTERS, 2000, 486 (01) :19-22