A delicate balance:: Homeostatic control of copper uptake and distribution

被引:587
作者
Peña, MMO [1 ]
Lee, J [1 ]
Thiele, DJ [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
copper; transport; distribution; Menkes; Wilson's disease; homeostatic regulation;
D O I
10.1093/jn/129.7.1251
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
The cellular uptake and intracellular distribution of the essential but highly toxic nutrient, copper, is a precisely orchestrated process. Copper homeostasis is coordinated by several proteins to ensure that it is delivered to specific subcellular compartments and copper-requiring proteins without releasing free copper ions that will cause damage to cellular components. Genetic studies in prokaryotic organisms and yeast have identified membrane-associated proteins that mediate the uptake or export of copper from cells. Within cells, small cytosolic proteins, called copper chaperones, have been identified that bind copper ions and deliver them to specific compartments and copper-requiring proteins. The identification of mammalian homologues of these proteins reveal a remarkable structural and functional conservation of copper metabolism between bacteria, yeast and humans. Furthermore, studies on the function and localization of the products of the Menkes and Wilson's disease genes, which are defective in patients afflicted with these diseases, have provided valuable insight into the mechanisms of copper balance and their role in maintaining appropriate copper distribution in mammals.
引用
收藏
页码:1251 / 1260
页数:10
相关论文
共 93 条
  • [1] Iron and copper transport in yeast and its relevance to human disease
    Askwith, C
    Kaplan, J
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (04) : 135 - 138
  • [2] Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle
    Beers, J
    Glerum, DM
    Tzagoloff, A
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (52) : 33191 - 33196
  • [3] Borjigin J, 1999, J NEUROSCI, V19, P1018
  • [4] Spongiform encephalopathies - B lymphocytes and neuroinvasion
    Brown, P
    [J]. NATURE, 1997, 390 (6661) : 662 - 663
  • [5] THE WILSON DISEASE GENE IS A PUTATIVE COPPER TRANSPORTING P-TYPE ATPASE SIMILAR TO THE MENKES GENE
    BULL, PC
    THOMAS, GR
    ROMMENS, JM
    FORBES, JR
    COX, DW
    [J]. NATURE GENETICS, 1993, 5 (04) : 327 - 337
  • [6] WILSON DISEASE AND MENKES DISEASE - NEW HANDLES ON HEAVY-METAL TRANSPORT
    BULL, PC
    COX, DW
    [J]. TRENDS IN GENETICS, 1994, 10 (07) : 246 - 252
  • [7] The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase
    Casareno, RLB
    Waggoner, D
    Gitlin, JD
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) : 23625 - 23628
  • [8] COPPER RESISTANCE IN PSEUDOMONAS-SYRINGAE MEDIATED BY PERIPLASMIC AND OUTER-MEMBRANE PROTEINS
    CHA, JS
    COOKSEY, DA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (20) : 8915 - 8919
  • [9] ISOLATION OF A CANDIDATE GENE FOR MENKES DISEASE THAT ENCODES A POTENTIAL HEAVY-METAL BINDING-PROTEIN
    CHELLY, J
    TUMER, Z
    TONNESEN, T
    PETTERSON, A
    ISHIKAWABRUSH, Y
    TOMMERUP, N
    HORN, N
    MONACO, AP
    [J]. NATURE GENETICS, 1993, 3 (01) : 14 - 19
  • [10] OBSERVATIONS ON MECHANISM OF ABSORPTION OF COPPER BY SMALL INTESTINE
    CRAMPTON, RF
    MATTHEWS, DM
    POISNER, R
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1965, 178 (01): : 111 - +