Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging

被引:216
作者
He, Hua [1 ]
Xie, Chao [1 ]
Ren, Jicun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Coll Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
D O I
10.1021/ac8005796
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we investigated the fluorescent properties of gold nanoparticles (GNPs) with several tens of nanometers by ensemble fluorescence spectrometry, fluorescence correlation spectroscopy (FCS), and fluorescence microscopy. We observed that GNPs synthesized by the citrate reduction of chloroauric acid possessed certain fluorescence, narrow full width at half-maximum (17 nm), and with an increase of particle sizes, the emission intensity showed a gradual increase while the emission wavelength remained almost constant (at 610 nm). Especially, the fluorescence of GNPs possessed the excellent behavior of antiphotobleaching under strong light illumination. Despite their low quantum yields, GNPs exhibited strong native fluorescence under relatively high excitation power. The fluorescence of GNPs could be characterized by fluorescence imaging and FCS at the single particle level. On the basis of this excellent antiphotobleaching of GNPs and easy photobleaching of cellular autofluorescence, we developed a new method for imaging of cells using GNPs as fluorescent probes. The principle of this method is that after cells stained with GNPs or GNPs bioconjugates are illuminated by strong light, the cellular autofluorescence are photobleached and the fluorescence of GNPs on cell membrane or inside cells can be collected for cell imaging. On the basis of this principle, we imaged living HeLa cells using GNPs as fluorescent probes and obtained good cell images by photobleaching of cellular autofluorescence. Furthermore, anti-EGFR/GNPs were successfully used as targeted probes for fluorescence imaging of cancer cells. Our preliminary results demonstrated that GNPs possessed excellent behaviors of antiphotobleaching and were good fluorescent probes in cell imaging. Our cellular imaging method described has potential applications in cancer diagnostics, studies, and immunoassays.
引用
收藏
页码:5951 / 5957
页数:7
相关论文
共 44 条
[1]   Regulation of AMPA receptor lateral movements [J].
Borgdorff, AJ ;
Choquet, D .
NATURE, 2002, 417 (6889) :649-653
[2]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[3]   Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J].
Chan, WCW ;
Nie, SM .
SCIENCE, 1998, 281 (5385) :2016-2018
[4]   Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles [J].
Curry, Adam C. ;
Crow, Matthew ;
Wax, Adam .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (01)
[5]  
Derfus AM, 2004, NANO LETT, V4, P11, DOI 10.1021/nl0347334
[6]   On-line investigation of laser-induced aggregation and photoactivation of CdTe quantum dots by fluorescence correlation spectroscopy [J].
Dong, Chaoqing ;
Qian, Huifeng ;
Fang, Nenghu ;
Ren, Jicun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (22) :7918-7923
[7]   Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy [J].
Dong, Chaoqing ;
Qian, Huifeng ;
Fang, Nenghu ;
Ren, Jicun .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (23) :11069-11075
[8]   Coupling fluorescence correlation spectroscopy with microchip electrophoresis to determine the effective surface charge of water-soluble quantum dots [J].
Dong, CQ ;
Bi, R ;
Qian, HF ;
Li, L ;
Ren, JC .
SMALL, 2006, 2 (04) :534-538
[9]   Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters [J].
Duan, Hongwei ;
Nie, Shuming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (09) :2412-+
[10]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834