Approximate inverse techniques for block-partitioned matrices

被引:66
作者
Chow, E [1 ]
Saad, Y [1 ]
机构
[1] UNIV MINNESOTA,MINNESOTA SUPERCOMP INST,MINNEAPOLIS,MN 55455
关键词
preconditioning; sparse approximate inverse; block-partitioned matrix; Schur complement; Navier-Stokes;
D O I
10.1137/S1064827595281575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes some preconditioning options when the system matrix is in block-partitioned form. This form may arise naturally for example, from the incompressible Navier-Stokes equations, or may be imposed after a domain decomposition reordering. Approximate inverse techniques are used to generate sparse approximate solutions whenever these are needed in forming the preconditioner. The storage requirements for these preconditioners may be much less than for incomplete LU factorization (ILU) preconditioners for tough, large-scale computational fluid dynamics (CFD) problems. The numerical experiments show that these preconditioners can help solve difficult linear systems whose coefficient matrices are highly indefinite.
引用
收藏
页码:1657 / 1675
页数:19
相关论文
共 27 条
[1]  
ALVARADO F, 1994, COL C IT METH BRECK
[2]   ON APPROXIMATE FACTORIZATION METHODS FOR BLOCK MATRICES SUITABLE FOR VECTOR AND PARALLEL PROCESSORS [J].
AXELSSON, O ;
POLMAN, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 77 :3-26
[3]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[4]  
BANK RE, 1990, NUMER MATH, V56, P645, DOI 10.1007/BF01405194
[5]  
Benson MW., 1982, Utilitas Math, V22, P127
[6]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[7]   A FRAMEWORK FOR BLOCK ILU FACTORIZATIONS USING BLOCK-SIZE REDUCTION [J].
CHAN, TF ;
VASSILEVSKI, PS .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :129-156
[8]  
CHOW E, 1995, 95216 UMSI
[9]  
CHOW E, 1997, IN PRESS J NUMER MET, V24
[10]  
CHOW E, 1998, IN PRESS SIAM J SCI, V19