Interpenetration of Metal Organic Frameworks for Carbon Dioxide Capture and Hydrogen Purification: Good or Bad?

被引:30
作者
Han, Sang Soo [1 ]
Jung, Dong-Hyun [2 ]
Heo, Jiyoung [3 ]
机构
[1] KRISS, Ctr Nanocharacterizat, Taejon 305340, South Korea
[2] Insilicotech Co Ltd, Songnam 463400, Gyeonggi Do, South Korea
[3] Sangmyung Univ, Dept Biomed Technol, Chungnam 330720, South Korea
关键词
ZEOLITIC IMIDAZOLATE FRAMEWORKS; MONTE-CARLO-SIMULATION; MOLECULAR-DYNAMICS SIMULATIONS; SURFACE-AREA; CO2; CAPTURE; EFFICIENT SEPARATION; FORCE-FIELD; FREE-VOLUME; ADSORPTION; STORAGE;
D O I
10.1021/jp308751x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using grand canonical Monte Carlo (GCMC) simulations with our recently developed first-principles-based force fields, we report the effects of porosity and interpenetration on the CO2 uptake in 14 prototypical MOFs (metal organic frameworks). The maximum CO2 capacity for both total and excess uptakes at high pressures (e.g., 50 bar) correlates well with the pore volume of MOFs and zeolitic imidazolate frameworks, rather than the surface area, which agrees well with the experimental results. The interpenetration between MOFs leads to smaller pore volume (higher density) lowering the maximum CO2 uptake at high pressures. However, the interpenetrating MOFs produce new CO2 adsorption sites with high binding affinity (approximately twice that of noninterpenetrating MOFs), such as shared spaces created by two organic linkers of adjacent MOFs, enhancing CO2 uptake at low pressures (e.g., 2 bar). For H-2 uptake at 298 K, on the other hand, the interpenetration does not provide positive effects. For these reasons, the interpenetration of MOFs remarkably enhances the selectivity of CO2 over H-2, by more than 3 times that of noninterpenetrating MOFs. These results also show that smaller pores in MOFs are, indeed, advantageous for the CO2/H-2 separation.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 60 条
[41]   CHARGE EQUILIBRATION FOR MOLECULAR-DYNAMICS SIMULATIONS [J].
RAPPE, AK ;
GODDARD, WA .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (08) :3358-3363
[42]   Large free volume in maximally interpenetrating networks:: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4•16[(CH3)2SO] [J].
Reineke, TM ;
Eddaoudi, M ;
Moler, D ;
O'Keeffe, M ;
Yaghi, OM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (19) :4843-4844
[43]   Strategies for hydrogen storage in metal-organic frameworks [J].
Rowsell, JLC ;
Yaghi, OM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) :4670-4679
[44]   Is catenation beneficial for hydrogen storage in metal-organic frameworks? [J].
Ryan, Patrick ;
Broadbelt, Linda J. ;
Snurr, Randall Q. .
CHEMICAL COMMUNICATIONS, 2008, (35) :4132-4134
[45]   Purification of hydrogen by pressure swing adsorption [J].
Sircar, S ;
Golden, TC .
SEPARATION SCIENCE AND TECHNOLOGY, 2000, 35 (05) :667-687
[46]  
Sircar S, 2010, HYDROGEN SYNGAS PROD, P414
[47]   Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials [J].
Sirjoosingh, Andrew ;
Alavi, Saman ;
Woo, Tom K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (05) :2171-2178
[48]   Carbon Dioxide Capture in Metal-Organic Frameworks [J].
Sumida, Kenji ;
Rogow, David L. ;
Mason, Jarad A. ;
McDonald, Thomas M. ;
Bloch, Eric D. ;
Herm, Zoey R. ;
Bae, Tae-Hyun ;
Long, Jeffrey R. .
CHEMICAL REVIEWS, 2012, 112 (02) :724-781
[49]   Hydrogen Storage in New Metal-Organic Frameworks [J].
Tranchemontagne, David J. ;
Park, Kyo Sung ;
Furukawa, Hiroyasu ;
Eckert, Juergen ;
Knobler, Carolyn B. ;
Yaghi, Omar M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (24) :13143-13151
[50]   Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid [J].
Vaidhyanathan, Ramanathan ;
Iremonger, Simon S. ;
Shimizu, George K. H. ;
Boyd, Peter G. ;
Alavi, Saman ;
Woo, Tom K. .
SCIENCE, 2010, 330 (6004) :650-653