Thermodynamics and folding kinetics analysis of the SH3 domain from discrete molecular dynamics

被引:53
作者
Borreguero, JM [1 ]
Dokholyan, NV
Buldyrev, SV
Shakhnovich, EI
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
protein folding; SH3; transition state; folding nucleus; molecular dynamics;
D O I
10.1016/S0022-2836(02)00136-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:863 / 876
页数:14
相关论文
共 77 条
[1]   NON-INTERACTING LOCAL-STRUCTURE MODEL OF FOLDING AND UNFOLDING TRANSITION IN GLOBULAR-PROTEINS .2. APPLICATION TO TWO-DIMENSIONAL LATTICE PROTEINS [J].
ABE, H ;
GO, N .
BIOPOLYMERS, 1981, 20 (05) :1013-1031
[2]   FREE-ENERGY LANDSCAPE FOR PROTEIN-FOLDING KINETICS - INTERMEDIATES, TRAPS, AND MULTIPLE PATHWAYS IN THEORY AND LATTICE MODEL SIMULATIONS [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07) :6052-6062
[3]   DOMAINS IN FOLDING OF MODEL PROTEINS [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
PROTEIN SCIENCE, 1995, 4 (06) :1167-1177
[4]   SPECIFIC NUCLEUS AS THE TRANSITION-STATE FOR PROTEIN-FOLDING - EVIDENCE FROM THE LATTICE MODEL [J].
ABKEVICH, VI ;
GUTIN, AM ;
SHAKHNOVICH, EI .
BIOCHEMISTRY, 1994, 33 (33) :10026-10036
[5]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[6]  
Allen M. P., 1987, COMPUTER SIMULATIONS, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[7]   Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures [J].
Alm, E ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11305-11310
[8]  
[Anonymous], 2011, GIANT MOL HERE THERE
[9]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[10]   Cooperativity and stability in a Langevin model of proteinlike folding [J].
Berriz, GF ;
Gutin, AM ;
Shakhnovich, EI .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (22) :9276-9285