GRAVITY SENSING AND SIGNAL TRANSDUCTION IN VASCULAR PLANT PRIMARY ROOTS

被引:95
作者
Baldwin, Katherine L.
Strohm, Allison K.
Masson, Patrick H. [1 ]
机构
[1] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
amyloplast; Arabidopsis; auxin; calcium; columella; geotropism; gravitropism; InsP(3); mechanosensitive ion channels; PIN; BASIPETAL AUXIN TRANSPORT; ARG1; ALTERED-RESPONSE; BOX PROTEIN TIR1; ARABIDOPSIS ROOTS; COMPUTER-VISION; LATERAL ROOTS; ENDOPLASMIC-RETICULUM; CARRIER POLARITY; MEMBRANE-PROTEIN; CAP CELLS;
D O I
10.3732/ajb.1200318
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.
引用
收藏
页码:126 / 142
页数:17
相关论文
共 144 条
[21]   Demonstration of prominent actin filaments in the root columella [J].
Collings, DA ;
Zsuppan, G ;
Allen, NS ;
Blancaflor, EB .
PLANTA, 2001, 212 (03) :392-403
[22]  
Darwin C., 1880, The Power of Movement in Plants
[23]   The F-box protein TIR1 is an auxin receptor [J].
Dharmasiri, N ;
Dharmasiri, S ;
Estelle, M .
NATURE, 2005, 435 (7041) :441-445
[24]   Light modulation of the gravitropic set-point angle (GSA) [J].
Digby, J ;
Firn, RD .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (367) :377-381
[25]  
DING JP, 1993, PLANT J, V3, P83, DOI 10.1111/j.1365-313X.1993.tb00013.x
[26]   Changes in root cap pH are required for the gravity response of the Arabidopsis root [J].
Fasano, JM ;
Swanson, SJ ;
Blancaflor, EB ;
Dowd, PE ;
Kao, TH ;
Gilroy, S .
PLANT CELL, 2001, 13 (04) :907-921
[27]   A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux [J].
Friml, J ;
Yang, X ;
Michniewicz, M ;
Weijers, D ;
Quint, A ;
Tietz, O ;
Benjamins, R ;
Ouwerkerk, PBF ;
Ljung, K ;
Sandberg, G ;
Hooykaas, PJJ ;
Palme, K ;
Offringa, R .
SCIENCE, 2004, 306 (5697) :862-865
[28]   Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis [J].
Friml, J ;
Wisniewska, J ;
Benkova, E ;
Mendgen, K ;
Palme, K .
NATURE, 2002, 415 (6873) :806-809
[29]   AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis [J].
Friml, J ;
Benková, E ;
Blilou, I ;
Wisniewska, J ;
Hamann, T ;
Ljung, K ;
Woody, S ;
Sandberg, G ;
Scheres, B ;
Jürgens, G ;
Palme, K .
CELL, 2002, 108 (05) :661-673
[30]   Subcellular trafficking of PIN auxin efflux carriers in auxin transport [J].
Friml, Jiri .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2010, 89 (2-3) :231-235