The photophysics of cryptophyte light-harvesting

被引:85
作者
Doust, Alexander B.
Wilk, Krystyna E.
Curmi, Paul M. G.
Scholes, Gregory D.
机构
[1] Univ Toronto, Lash Miller Chem Labs, Inst Opt Sci, Ctr Quantum Informat & Quantum Control, Toronto, ON M5S 3H6, Canada
[2] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia
[3] Univ New S Wales, Ctr Immunol, Sydney, NSW 2052, Australia
关键词
cryptophytes; photosynthesis; energy transfer; spectroscopy; phycobiliproteins;
D O I
10.1016/j.jphotochem.2006.06.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent studies of the optical properties and the critical role of phycobiliproteins in the absorption of green light for photosynthesis in cryptophyte algae (Rhodomonas CS24 and Chroomonas CCMP270) are reviewed. Investigations of two different isolated proteins, phycoerythrin 545 (PE545) and phycocyanin 645 (PC645), whose crystal structures are known to 0.97 and 1.4 angstrom resolution respectively, are described. Steady-state spectroscopic measurements, including polarization anisotropy and circular dichroism, are used in combination with ultrafast transient grating and transient absorption techniques to elucidate a detailed picture of resonance energy transfer within the light-harvesting proteins. Quantum chemical calculations are employed to estimate phycobilin excited states, and generate transition density cubes which are used to calculate accurately the electronic coupling between the chromophores in PE545 and PC645. Energy transfer dynamics are examined using the generalized Forster theory. Kinetic models for energy transfer dynamics in both proteins are presented for comparison. Investigations of energy transfer from phycoerythrin 545 to chlorophyll-containing light harvesting complexes and photosystems in the intact algae Rhodomonas CS24 and Chroomonas CCMP270 are also reported. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 112 条
[11]   EXCITATION-ENERGY TRANSFER IN THE CRYPTOPHYTES - FLUORESCENCE EXCITATION-SPECTRA AND PICOSECOND TIME-RESOLVED EMISSION-SPECTRA OF INTACT ALGAE AT 77-K [J].
BRUCE, D ;
BIGGINS, J ;
STEINER, T ;
THEWALT, M .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1986, 44 (04) :519-525
[12]  
CHARNEY E, 1979, MOL BASIS OPTICALC A
[13]  
CHENG L, 1991, CHINESE CHEM LETT, V2, P589
[14]   A revised classification of Cryptophyta [J].
Clay, BL ;
Kugrens, P ;
Lee, RE .
BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 1999, 131 (02) :131-151
[15]   THE DEVELOPMENT OF EXCITON MIGRATION ROUTES FOR PHYCOCYANIN-645 AND ALLOPHYCOCYANIN [J].
CSATORDAY, K ;
GUARDFRIAR, D ;
MACCOLL, R ;
BERNS, DS .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1988, 47 (02) :285-291
[16]   COMPARISON OF CALCULATED AND EXPERIMENTALLY RESOLVED RATE CONSTANTS FOR EXCITATION-ENERGY TRANSFER IN C-PHYCOCYANIN .2. TRIMERS [J].
DEBRECZENY, MP ;
SAUER, K ;
ZHOU, JH ;
BRYANT, DA .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (20) :8420-8431
[17]   Supramolecular organization of thylakoid membrane proteins in green plants [J].
Dekker, JP ;
Boekema, EJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2005, 1706 (1-2) :12-39
[18]  
Des Marais DJ, 2000, SCIENCE, V289, P1703
[19]   Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis [J].
Doust, AB ;
van Stokkum, IHM ;
Larsen, DS ;
Wilk, KE ;
Curmi, PMG ;
van Grondelle, R ;
Scholes, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (29) :14219-14226
[20]   Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy [J].
Doust, AB ;
Marai, CNJ ;
Harrop, SJ ;
Wilk, KE ;
Curmi, PMG ;
Scholes, GD .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (01) :135-153