In the reaction cycle of cytochrome c oxidase from Rhodobacter sphaeroides, one of the steps that are coupled to proton pumping, the oxo-ferryl-to-oxidized transition (F --> O), displays a large kinetic deuterium isotope effect of about 7, In this study we have investigated in detail the dependence of the kinetics of this reaction step [k(FO)(chi)] on the fraction (chi) D2O in the enzyme solution (proton-inventory technique). According to a simplified version of the Gross-Butler equation, from the shape of the graph describing k(FO)(chi)/k(FO)(0), conclusions can be drawn concerning the number of protonatable sites involved in the rare-limiting proton-transfer reaction step. Even though the proton-transfer reaction during the F --> O transition takes place over a distance of at least 30 Angstrom and involves a large number of protonatable sites, the proton-inventory analysis displayed a linear dependence, which indicates that the entire deuterium isotope effect of 7 is associated with a single protonatable site. On the basis of experiments with site-directed mutants of cytochrome c oxidase, this localized proton-transfer rate control is proposed to be associated with glutamate (I-286) in the D-pathway, Consequently, the results indicate that proton transfer from the glutamate controls the rate of all events during the F --> O reaction step. The proton-inventory analysis of the overall enzyme turnover reveals a nonlinear plot characteristic of at least two protonatable sites involved in the rate-limiting step in the transition state, which indicates that this step does not involve proton transfer through the same pathway (or through the same mechanism) as during the F --> O transition.