A novel ryanodine receptor mutation and genotype-phenotype correlation in a large malignant hyperthermia New Zealand Maori pedigree

被引:73
作者
Brown, RL
Pollock, AN
Couchman, KG
Hodges, M
Hutchinson, DO
Waaka, R
Lynch, P
McCarthy, TV
Stowell, KM
机构
[1] Massey Univ, Inst Mol Biosci, Palmerston North, New Zealand
[2] Palmerston N Hosp, Dept Anaesthesia & Intens Care, Palmerston North, New Zealand
[3] Auckland Hosp, Dept Neurol, Auckland, New Zealand
[4] Ngati Raukawa, Aoteoroa, New Zealand
[5] Natl Univ Ireland Univ Coll Cork, Dept Biochem, Cork, Ireland
关键词
D O I
10.1093/hmg/9.10.1515
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Malignant hyperthermia (MH) is a pharmacogenetic disorder that predisposes to a sometimes fatal hypermetabolic reaction to halogenated anaesthetics. MH is considered to originate from abnormal regulation of skeletal muscle Ca2+ release. Current diagnosis of MH susceptibility (MHS) relies on in vitro contracture testing (IVCT) of skeletal muscle. The ryanodine receptor (RYR1) encoding the major Ca2+ release channel in the skeletal muscle sarcoplasmic reticulum has been shown to be mutated in a number of MH pedigrees. The large Maori pedigree reported here is the largest MHS pedigree investigated to date and comprises five probands who experienced clinical episodes of MH and 130 members diagnosed by the IVCT. Sequencing of the 15 117 bp RYR1 cDNA in a MHS individual from this pedigree identified a novel C14477T transition that results in a Thr4826 to IIe substitution in the C-terminal region/transmembrane loop of the skeletal muscle ryanodine receptor. This is the first mutation in the RyR1 C-terminal region associated solely with MHS. Although linkage analysis showed strong linkage (max LOD, 11.103 at theta = 0.133) between the mutation and MHS in the pedigree using the standardized European IVCT phenotyping protocol, 22 MHS recombinants were observed. The relationship between the IVCT response and genotype was explored and showed that as IVCT diagnostic cut-off points were made increasingly stringent, the number of MHS discordants decreased with complete concordance between the presence or absence of the C14477T mutation and MHS and MH normal phenotypes, respectively, using a cut-off of 1.2 g tension at 2.0 mM caffeine and 1.8 g tension at 2.0% halothane. Many MHS pedigrees investigated have been excluded from linkage to the RYR1 gene on the basis of a small number of recombinants; however, the linkage analysis reported here suggests that other recombinant families excluded from linkage to the RYR1 gene may actually demonstrate linkage as the number of members tested within the pedigrees increases. The high number of discordants observed using the standardized diagnostic cut-off points is likely to reflect the presence of a second MHS susceptibility locus in the pedigree.
引用
收藏
页码:1515 / 1524
页数:10
相关论文
共 55 条
[31]   Identification of novel mutations in the ryanodine-receptor gene (RYR1) in malignant hyperthermia: Genotype-phenotype correlation [J].
Manning, BM ;
Quane, KA ;
Ording, H ;
Urwyler, A ;
Tegazzin, V ;
Lehane, M ;
O'Halloran, J ;
Hartung, E ;
Giblin, LM ;
Lynch, PJ ;
Vaughan, P ;
Censier, K ;
Bendixen, D ;
Comi, G ;
Heytens, L ;
Monsieurs, K ;
Fagerlund, T ;
Wolz, W ;
Heffron, JJA ;
Muller, CR ;
McCarthy, TV .
AMERICAN JOURNAL OF HUMAN GENETICS, 1998, 62 (03) :599-609
[32]   LOCALIZATION OF THE MALIGNANT HYPERTHERMIA SUSCEPTIBILITY LOCUS TO HUMAN-CHROMOSOME 19Q12-13.2 [J].
MCCARTHY, TV ;
HEALY, JMS ;
HEFFRON, JJA ;
LEHANE, M ;
DEUFEL, T ;
LEHMANNHORN, F ;
FARRALL, M ;
JOHNSON, K .
NATURE, 1990, 343 (6258) :562-564
[33]   Malignant hyperthermia: Excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects [J].
Mickelson, JR ;
Louis, CF .
PHYSIOLOGICAL REVIEWS, 1996, 76 (02) :537-592
[34]   Malignant-hyperthermia susceptibility is associated with a mutation of the alpha(1)-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle [J].
Monnier, N ;
Procaccio, V ;
Stieglitz, P ;
Lunardi, J .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 60 (06) :1316-1325
[35]   EXCLUSION OF DEFECTS IN THE SKELETAL-MUSCLE SPECIFIC REGIONS OF THE DHPR ALPHA(1) SUBUNIT AS FREQUENT CAUSES OF MALIGNANT HYPERTHERMIA [J].
OBRIEN, RO ;
TASKE, NL ;
HANSBRO, PM ;
MATTHAEI, KI ;
HOGAN, SP ;
DENBOROUGH, MA ;
FOSTER, PS .
JOURNAL OF MEDICAL GENETICS, 1995, 32 (11) :913-914
[36]   In vitro contracture test for diagnosis of malignant hyperthermia following the protocol of the European MH Group: Results of testing patients surviving fulminant MH and unrelated low-risk subjects [J].
Ording, H ;
Brancadoro, V ;
Cozzolino, S ;
Ellis, FR ;
Glauber, V ;
Gonano, EF ;
Halsall, PJ ;
Hartung, E ;
Heffron, JJA ;
Heytens, L ;
KozakRibbens, G ;
Kress, H ;
KrivosicHorber, R ;
LehmannHorn, F ;
Mortier, W ;
Nivoche, Y ;
RanklevTwetman, E ;
Sigurdsson, S ;
Snoeck, M ;
Stieglitz, P ;
Tegazzin, V ;
Urwyler, A ;
Wappler, F .
ACTA ANAESTHESIOLOGICA SCANDINAVICA, 1997, 41 (08) :955-966
[37]   INVESTIGATION OF MALIGNANT HYPERTHERMIA IN DENMARK AND SWEDEN [J].
ORDING, H ;
RANKLEV, E ;
FLETCHER, R .
BRITISH JOURNAL OF ANAESTHESIA, 1984, 56 (11) :1183-1190
[38]  
PETERSON DR, 1986, AUST PAEDIATR J, V22, P33
[39]   The structural organization of the human skeletal muscle ryanodine receptor (RYR1) gene [J].
Phillips, MS ;
Fujii, J ;
Khanna, VK ;
DeLeon, S ;
Yokobata, K ;
deJong, PJ ;
MacLennan, DH .
GENOMICS, 1996, 34 (01) :24-41
[40]   THE SUBSTITUTION OF ARG FOR GLY(2433) IN THE HUMAN SKELETAL-MUSCLE RYANODINE RECEPTOR IS ASSOCIATED WITH MALIGNANT HYPERTHERMIA [J].
PHILLIPS, MS ;
KHANNA, VK ;
DELEON, S ;
FRODIS, W ;
BRITT, BA ;
MACLENNAN, DH .
HUMAN MOLECULAR GENETICS, 1994, 3 (12) :2181-2186