Bifurcations in a planar system of differential delay equations modeling neural activity

被引:45
作者
Giannakopoulos, F
Zapp, A
机构
[1] Fraunhofer Inst Autonomous Intelligent Syst, D-53754 St Augustin, Germany
[2] Univ Cologne, Inst Math, D-50931 Cologne, Germany
来源
PHYSICA D | 2001年 / 159卷 / 3-4期
关键词
neural activity; nonlinear delay differential equations; saddle-node bifurcation; Hopf bifurcation; Bogdanov-Takens bifurcation;
D O I
10.1016/S0167-2789(01)00337-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A planar system of differential delay equations modeling neural activity is investigated. The stationary points and their saddle-node bifurcations are estimated. By an analysis of the associated characteristic equation, Hopf bifurcations are demonstrated. At the intersection points of the saddle-node and Hopf bifurcation curves in an appropriate parameter plane, the existence of Bogdanov-Takens singularities is shown. The properties of the Bogdanov-Takens singularities are studied by applying the center manifold and normal form theory. A numerical example illustrates the obtained results. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 28 条
[1]  
[Anonymous], IMA J NUMER ANAL
[2]   On the existence and global bifurcation of periodic solutions to planar differential delay equations [J].
Baptistini, MZ ;
Taboas, PZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (02) :391-425
[3]  
Belair J., 1993, Journal of Dynamics and Differential Equations, V5, P607, DOI 10.1007/BF01049141
[4]   The numerical computation of homoclinic orbits for maps [J].
Beyn, WJ ;
Kleinkauf, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1207-1236
[5]  
Bogdanov R. I., 1975, FUNCTIONAL ANAL ITS, V9, P144, DOI DOI 10.1007/BF01075453
[6]  
Braddock R. D., 1976, Journal of the Australian Mathematical Society, Series B (Applied Mathematics), V19, P358, DOI 10.1017/S0334270000001211
[7]  
COWAN JD, 1978, STUDIES MATH, V15, P67
[8]  
DERHEIDEN U, 1980, LECT NOTES BIOMATHEM, V35
[9]   NORMAL FORMS FOR RETARDED FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH PARAMETERS AND APPLICATIONS TO HOPF-BIFURCATION [J].
FARIA, T ;
MAGALHAES, LT .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :181-200
[10]  
GIANNAKOPOULOS F, 2001, NONLINEAR DYN SYST T, V1, P145