On the existence and global bifurcation of periodic solutions to planar differential delay equations

被引:37
作者
Baptistini, MZ [1 ]
Taboas, PZ [1 ]
机构
[1] UNIV SAO PAULO,INST CIENCIAS MATEMAT SAO CARLOS,BR-13560970 SAO CARLOS,BRAZIL
关键词
D O I
10.1006/jdeq.1996.0075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with periodic solutions to one-parameter families of planar differential delay equations. The concept of slowly oscillating periodic solution is extended to this setting and we state the existence of an unbounded continuum of such solutions. (C) 1996 Academic Press, Inc.
引用
收藏
页码:391 / 425
页数:35
相关论文
共 17 条
[1]  
BAPTISTINI MZ, 1990, THESIS U S PAULO
[2]  
Bellman R., 1963, DIFFERENTIAL DIFFERE
[3]   A FURTHER GENERALIZATION OF SCHAUDER FIXED POINT THEOREM [J].
BROWDER, FE .
DUKE MATHEMATICAL JOURNAL, 1965, 32 (04) :575-&
[4]   EXISTENCE OF PERIODIC-SOLUTIONS OF AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
CHOW, SN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :350-378
[5]  
CHOW SN, 1978, J MATH ANAL APPLK, V166, P495
[6]   A PERIODICITY THEOREM FOR AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
GRAFTON, RB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (01) :87-&
[7]  
HADELER K, 1979, LECTURE NOTES MATH, V730
[8]   PERIODIC-SOLUTIONS OF DIFFERENCE-DIFFERENTIAL EQUATIONS [J].
HADELER, KP ;
TOMIUK, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 65 (01) :87-95
[9]  
HALE JK, 1977, THEORY FUNCTIONAL DI
[10]  
HEIDEN UAD, 1979, J MATH ANAL APPL, V70, P599