On the existence and global bifurcation of periodic solutions to planar differential delay equations

被引:37
作者
Baptistini, MZ [1 ]
Taboas, PZ [1 ]
机构
[1] UNIV SAO PAULO,INST CIENCIAS MATEMAT SAO CARLOS,BR-13560970 SAO CARLOS,BRAZIL
关键词
D O I
10.1006/jdeq.1996.0075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with periodic solutions to one-parameter families of planar differential delay equations. The concept of slowly oscillating periodic solution is extended to this setting and we state the existence of an unbounded continuum of such solutions. (C) 1996 Academic Press, Inc.
引用
收藏
页码:391 / 425
页数:35
相关论文
共 17 条
[11]   BOUNDARY-LAYER PHENOMENA FOR DIFFERENTIAL-DELAY EQUATIONS WITH STATE-DEPENDENT TIME LAGS .1. [J].
MALLETPARET, J ;
NUSSBAUM, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 120 (02) :99-146
[12]  
MALLETPARET J, 1986, ANN MAT PUR APPL, V145, P33, DOI 10.1007/BF01790539
[13]  
MALLETPARET J, BOUNDARY LAYER PHENO
[14]   GLOBAL BIFURCATION THEOREM WITH APPLICATIONS TO FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
NUSSBAUM, RD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 19 (04) :319-338
[15]  
Nussbaum RD, 1974, ANN MAT PUR APPL, V101, P263, DOI DOI 10.1007/BF02417109.MR0361372
[16]  
PONTRYAGIN LS, 1955, AM MATH SOC TRANSL 2, V1, P95
[17]   PERIODIC-SOLUTIONS OF A PLANAR DELAY EQUATION [J].
TABOAS, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :85-101