Nanostructured sulfur cathodes

被引:1818
作者
Yang, Yuan [1 ]
Zheng, Guangyuan [2 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
GLYCOL) DIMETHYL ETHER; CARBON NANOTUBES COMPOSITE; ELECTROCHEMICAL PROPERTIES; HIGH-CAPACITY; DISCHARGE PROCESS; LITHIUM BATTERIES; GRAPHENE OXIDE; PERFORMANCE; ELECTRODE; CYCLE;
D O I
10.1039/c2cs35256g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes.
引用
收藏
页码:3018 / 3032
页数:15
相关论文
共 108 条
[1]   Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries [J].
Ahn, Wook ;
Kim, Kwang-Bum ;
Jung, Kyu-Nam ;
Shin, Kyoung-Hee ;
Jin, Chang-Soo .
JOURNAL OF POWER SOURCES, 2012, 202 :394-399
[2]   Nanoscale X-Ray Microscopic Imaging of Mammalian Mineralized Tissue [J].
Andrews, Joy C. ;
Almeida, Eduardo ;
van der Meulen, Marjolein C. H. ;
Alwood, Joshua S. ;
Lee, Chialing ;
Liu, Yijin ;
Chen, Jie ;
Meirer, Florian ;
Feser, Michael ;
Gelb, Jeff ;
Rudati, Juana ;
Tkachuk, Andrei ;
Yun, Wenbing ;
Pianetta, Piero .
MICROSCOPY AND MICROANALYSIS, 2010, 16 (03) :327-336
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[5]  
BIRK JR, 1975, ADV CHEM SER, P186
[6]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery [J].
Chang, DR ;
Lee, SH ;
Kim, SW ;
Kim, HT .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :452-460
[9]   A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries [J].
Chen, Jia-jia ;
Zhang, Qian ;
Shi, Yi-ning ;
Qin, Lin-lin ;
Cao, Yong ;
Zheng, Ming-sen ;
Dong, Quan-feng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5376-5382
[10]   Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery [J].
Chen, Shu-Ru ;
Zhai, Yun-Pu ;
Xu, Gui-Liang ;
Jiang, Yan-Xia ;
Zhao, Dong-Yuan ;
Li, Jun-Tao ;
Huang, Ling ;
Sun, Shi-Gang .
ELECTROCHIMICA ACTA, 2011, 56 (26) :9549-9555