Biorthogonal wavelets, MRA's and shift-invariant spaces

被引:23
作者
Bownik, M
Garrigós, G
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Autonoma Madrid, E-28049 Madrid, Spain
关键词
Riesz wavelet; biorthogonal wavelet; multiresolution analysis; shift-invariant space; dimension function;
D O I
10.4064/sm160-3-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a characterization of biorthogonal wavelets arising from MRA's of multiplicity D entirely in terms of the dimension function. This improves the previous characterization in [8] removing an unnecessary angle condition. Besides we characterize Riesz wavelets arising from MRA's, and present new proofs based on shift-invariant space theory, generalizing the 1-dimensional results appearing in [17].
引用
收藏
页码:231 / 248
页数:18
相关论文
共 22 条
[1]   Oblique projections in atomic spaces [J].
Aldroubi, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2051-2060
[2]   Construction of biorthogonal wavelets starting from any two multiresolutions [J].
Aldroubi, A ;
Abry, P ;
Unser, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :1130-1133
[3]  
[Anonymous], 1993, Ten Lectures of Wavelets
[4]   SOLUTION OF 2 PROBLEMS ON WAVELETS [J].
AUSCHER, P .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) :181-236
[5]   A characterization of dimension functions of wavelets [J].
Bownik, M ;
Rzeszotnik, Z ;
Speegle, D .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) :71-92
[6]   The structure of shift-invariant subspaces of L2(Rn) [J].
Bownik, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) :282-309
[7]   Riesz wavelets and generalized multiresolution analyses [J].
Bownik, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 14 (03) :181-194
[8]  
Brandolini L., 1999, CONT MATH, V247, P75
[9]   A Characterization of Wavelet Families Arising from Biorthogonal MRA's of Multiplicity d [J].
Calogero, Andrea ;
Garrigos, Gustavo .
JOURNAL OF GEOMETRIC ANALYSIS, 2001, 11 (02) :187-217
[10]   A STABILITY-CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME [J].
COHEN, A ;
DAUBECHIES, I .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (02) :313-335