COVARIANCE REGULARIZATION BY THRESHOLDING

被引:771
作者
Bickel, Peter J. [1 ]
Levina, Elizaveta [2 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Covariance estimation; regularization; sparsity; thresholding; large p small n; high dimension low sample size;
D O I
10.1214/08-AOS600
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers regularizing a covariance matrix of p variables estimated from it observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or sub-Gaussian, and (log p)/n -> 0, and obtain explicit rates. The results are uniform over families of covariance matrices which satisfy a fairly natural notion of sparsity. We discuss an intuitive resampling scheme for threshold selection and prove a general cross-validation result that justifies this approach. We also compare thresholding to other covariance estimators in simulations and on an example from climate data.
引用
收藏
页码:2577 / 2604
页数:28
相关论文
共 35 条
  • [1] Adapting to unknown sparsity by controlling the false discovery rate
    Abramovich, Felix
    Benjamini, Yoav
    Donoho, David L.
    Johnstone, Iain M.
    [J]. ANNALS OF STATISTICS, 2006, 34 (02) : 584 - 653
  • [2] [Anonymous], 2004, SPARSE PRINCIP UNPUB
  • [3] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (01) : 199 - 227
  • [4] Bickel PJ, 2006, J MACH LEARN RES, V7, P705
  • [5] Some theory for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variables than observations
    Bickel, PJ
    Levina, E
    [J]. BERNOULLI, 2004, 10 (06) : 989 - 1010
  • [6] First-order methods for sparse covariance selection
    D'Aspremont, Alexandre
    Banerjee, Onureena
    El Ghaoui, Laurent
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 56 - 66
  • [7] A direct formulation for sparse PCA using semidefinite programming
    d'Aspremont, Alexandre
    El Ghaoui, Laurent
    Jordan, Michael I.
    Lanckriet, Gert R. G.
    [J]. SIAM REVIEW, 2007, 49 (03) : 434 - 448
  • [8] ESTIMATION OF A COVARIANCE-MATRIX UNDER STEINS LOSS
    DEY, DK
    SRINIVASAN, C
    [J]. ANNALS OF STATISTICS, 1985, 13 (04) : 1581 - 1591
  • [9] IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE
    DONOHO, DL
    JOHNSTONE, IM
    [J]. BIOMETRIKA, 1994, 81 (03) : 425 - 455
  • [10] Dudoit S., 2005, Statistical Methodology, V2, P131, DOI DOI 10.1016/J.STAMET.2005.02.003