First-order methods for sparse covariance selection

被引:190
作者
D'Aspremont, Alexandre [1 ]
Banerjee, Onureena [2 ]
El Ghaoui, Laurent [2 ]
机构
[1] Princeton Univ, ORFE Dept, Princeton, NJ 08544 USA
[2] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
covariance selection; semidefinite programming; coordinate descent;
D O I
10.1137/060670985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a sample covariance matrix, we solve a maximum likelihood problem penalized by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a sparse representation of the sample data and to highlight conditional independence relationships between the sample variables. We first formulate a convex relaxation of this combinatorial problem, we then detail two efficient first-order algorithms with low memory requirements to solve large-scale, dense problem instances.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 19 条
  • [1] AKAIKE J, 1973, 2 INT S INF THEOR AK, P267
  • [2] Bilmes JA, 2000, INT CONF ACOUST SPEE, P1009
  • [3] BILMES JA, 1999, THESIS UC BERKELEY B
  • [4] Boyd S., 2004, Convex Optimization, DOI [10.1017/CBO9780511804441, DOI 10.1017/CBO9780511804441]
  • [5] Multimodel inference - understanding AIC and BIC in model selection
    Burnham, KP
    Anderson, DR
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2004, 33 (02) : 261 - 304
  • [6] Dahl J., 2005, MAXIMUM LIKELIHOOD E
  • [7] COVARIANCE SELECTION
    DEMPSTER, AP
    [J]. BIOMETRICS, 1972, 28 (01) : 157 - &
  • [8] Sparse graphical models for exploring gene expression data
    Dobra, A
    Hans, C
    Jones, B
    Nevins, JR
    Yao, GA
    West, M
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) : 196 - 212
  • [9] Dobra A., 2004, Bayesian Covariance Selection
  • [10] Sparse nonnegative solution of underdetermined linear equations by linear programming
    Donoho, DL
    Tanner, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) : 9446 - 9451