First-order methods for sparse covariance selection

被引:190
作者
D'Aspremont, Alexandre [1 ]
Banerjee, Onureena [2 ]
El Ghaoui, Laurent [2 ]
机构
[1] Princeton Univ, ORFE Dept, Princeton, NJ 08544 USA
[2] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
covariance selection; semidefinite programming; coordinate descent;
D O I
10.1137/060670985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a sample covariance matrix, we solve a maximum likelihood problem penalized by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a sparse representation of the sample data and to highlight conditional independence relationships between the sample variables. We first formulate a convex relaxation of this combinatorial problem, we then detail two efficient first-order algorithms with low memory requirements to solve large-scale, dense problem instances.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 19 条