THE COMMUNITY EARTH SYSTEM MODEL (CESM) LARGE ENSEMBLE PROJECT A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability

被引:1896
作者
Kay, J. E. [1 ]
Deser, C. [2 ]
Phillips, A. [2 ]
Mai, A. [2 ]
Hannay, C. [2 ]
Strand, G. [2 ]
Arblaster, J. M. [3 ,4 ]
Bates, S. C. [2 ]
Danabasoglu, G. [2 ]
Edwards, J. [2 ]
Holland, M. [2 ]
Kushner, P. [5 ]
Lamarque, J. -F. [2 ]
Lawrence, D. [2 ]
Lindsay, K. [2 ]
Middleton, A. [2 ]
Munoz, E. [2 ]
Neale, R. [2 ]
Oleson, K. [2 ]
Polvani, L. [6 ,7 ]
Vertenstein, M. [2 ]
机构
[1] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[2] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA
[3] Natl Ctr Atmospher Res, Climate & Global Dynam Div, Boulder, CO 80307 USA
[4] Bur Meteorol, Melbourne, Australia
[5] Univ Toronto, Dept Phys, Toronto, ON, Canada
[6] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[7] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA
基金
美国国家科学基金会;
关键词
Atmosphere-ocean interaction; Walker circulation; Sea surface temperature; Thermocline circulation; Albedo; Paleoclimate; HEAT WAVES; PACIFIC; HIATUS; CIRCULATION; AEROSOLS; TRENDS; IMPACT; GASES; CMIP5;
D O I
10.1175/BAMS-D-13-00255.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.
引用
收藏
页码:1333 / 1349
页数:17
相关论文
共 54 条
[31]   Climate Change from 1850 to 2005 Simulated in CESM1(WACCM) [J].
Marsh, Daniel R. ;
Mills, Michael J. ;
Kinnison, Douglas E. ;
Lamarque, Jean-Francois ;
Calvo, Natalia ;
Polvani, Lorenzo M. .
JOURNAL OF CLIMATE, 2013, 26 (19) :7372-7391
[32]   More intense, more frequent, and longer lasting heat waves in the 21st century [J].
Meehl, GA ;
Tebaldi, C .
SCIENCE, 2004, 305 (5686) :994-997
[33]   Climate Change Projections in CESM1(CAM5) Compared to CCSM4 [J].
Meehl, Gerald A. ;
Washington, Warren M. ;
Arblaster, Julie M. ;
Hu, Aixue ;
Teng, Haiyan ;
Kay, Jennifer E. ;
Gettelman, Andrew ;
Lawrence, David M. ;
Sanderson, Benjamin M. ;
Strand, Warren G. .
JOURNAL OF CLIMATE, 2013, 26 (17) :6287-6308
[34]   Climate System Response to External Forcings and Climate Change Projections in CCSM4 [J].
Meehl, Gerald A. ;
Washington, Warren M. ;
Arblaster, Julie M. ;
Hu, Aixue ;
Teng, Haiyan ;
Tebaldi, Claudia ;
Sanderson, Benjamin N. ;
Lamarque, Jean-Francois ;
Conley, Andrew ;
Strand, Warren G. ;
White, James B., III .
JOURNAL OF CLIMATE, 2012, 25 (11) :3661-3683
[35]   Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods [J].
Meehl, Gerald A. ;
Arblaster, Julie M. ;
Fasullo, John T. ;
Hu, Aixue ;
Trenberth, Kevin E. .
NATURE CLIMATE CHANGE, 2011, 1 (07) :360-364
[36]   The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 [J].
Meinshausen, Malte ;
Smith, S. J. ;
Calvin, K. ;
Daniel, J. S. ;
Kainuma, M. L. T. ;
Lamarque, J-F. ;
Matsumoto, K. ;
Montzka, S. A. ;
Raper, S. C. B. ;
Riahi, K. ;
Thomson, A. ;
Velders, G. J. M. ;
van Vuuren, D. P. P. .
CLIMATIC CHANGE, 2011, 109 (1-2) :213-241
[37]   Marine Ecosystem Dynamics and Biogeochemical Cycling in the Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 Scenarios [J].
Moore, J. Keith ;
Lindsay, Keith ;
Doney, Scott C. ;
Long, Matthew C. ;
Misumi, Kazuhiro .
JOURNAL OF CLIMATE, 2013, 26 (23) :9291-9312
[38]   Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set [J].
Morice, Colin P. ;
Kennedy, John J. ;
Rayner, Nick A. ;
Jones, Phil D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[39]   Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations [J].
Mudryk, L. R. ;
Kushner, P. J. ;
Derksen, C. .
CLIMATE DYNAMICS, 2014, 43 (1-2) :345-359
[40]   Quantification of modelling uncertainties in a large ensemble of climate change simulations [J].
Murphy, JM ;
Sexton, DMH ;
Barnett, DN ;
Jones, GS ;
Webb, MJ ;
Stainforth, DA .
NATURE, 2004, 430 (7001) :768-772