A selective and efficient electrocatalyst for carbon dioxide reduction

被引:1316
作者
Lu, Qi [1 ]
Rosen, Jonathan [1 ]
Zhou, Yang [2 ]
Hutchings, Gregory S. [1 ]
Kimmel, Yannick C. [1 ]
Chen, Jingguang G. [3 ]
Jiao, Feng [1 ]
机构
[1] Univ Delaware, Ctr Catalyt Sci & Technol, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[3] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
FUEL-CELL CATALYSTS; CO2; REDUCTION; ELECTROCHEMICAL REDUCTION; HYDROGEN EVOLUTION; COPPER ELECTRODES; ENHANCED ACTIVITY; NANOPOROUS GOLD; SILVER; ENERGY; SURFACES;
D O I
10.1038/ncomms4242
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Converting carbon dioxide to useful chemicals in a selective and efficient manner remains a major challenge in renewable and sustainable energy research. Silver is an interesting electrocatalyst owing to its capability of converting carbon dioxide to carbon monoxide selectively at room temperature; however, the traditional polycrystalline silver electrocatalyst requires a large overpotential. Here we report a nanoporous silver electrocatalyst that is able to electrochemically reduce carbon dioxide to carbon monoxide with approximately 92% selectivity at a rate (that is, current) over 3,000 times higher than its polycrystalline counterpart under moderate overpotentials of <0.50V. The high activity is a result of a large electrochemical surface area (approximately 150 times larger) and intrinsically high activity (approximately 20 times higher) compared with polycrystalline silver. The intrinsically higher activity may be due to the greater stabilization of CO2- intermediates on the highly curved surface, resulting in smaller overpotentials needed to overcome the thermodynamic barrier.
引用
收藏
页数:6
相关论文
共 39 条
  • [11] Fine-tuning the feature size of nanoporous silver
    Detsi, Eric
    Vukovic, Zorica
    Punzhin, Sergey
    Bronsveld, Paul M.
    Onck, Patrick R.
    De Hosson, Jeff Th M.
    [J]. CRYSTENGCOMM, 2012, 14 (17): : 5402 - 5406
  • [12] Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
    Dubois, M. Rakowski
    Dubois, Daniel L.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (12) : 1974 - 1982
  • [13] Fujita T, 2012, NAT MATER, V11, P775, DOI [10.1038/nmat3391, 10.1038/NMAT3391]
  • [14] Understanding and Controlling Nanoporosity Formation for Improving the Stability of Bimetallic Fuel Cell Catalysts
    Gan, Lin
    Heggen, Marc
    O'Malley, Rachel
    Theobald, Brian
    Strasser, Peter
    [J]. NANO LETTERS, 2013, 13 (03) : 1131 - 1138
  • [15] Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas
    Gattrell, M.
    Gupta, N.
    Co, A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) : 1255 - 1265
  • [16] Gileadi E., 1993, ELECTRODE KINETICS C
  • [17] Artificial Photosynthesis and Solar Fuels
    Hammarstrom, Leif
    Hammes-Schiffer, Sharon
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (12) : 1859 - 1860
  • [18] Hori Y, 2008, MOD ASP ELECTROCHEM, P89
  • [19] Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110)
    Hoshi, N
    Kato, M
    Hori, Y
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 440 (1-2): : 283 - 286
  • [20] Selective Electrocatalytic Reduction of CO2 to Formate by Water-Stable Iridium Dihydride Pincer Complexes
    Kang, Peng
    Cheng, Chen
    Chen, Zuofeng
    Schauer, Cynthia K.
    Meyer, Thomas J.
    Brookhart, Maurice
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (12) : 5500 - 5503