Dewetting films:: bifurcations and concentrations

被引:96
作者
Bertozzi, AL [1 ]
Grün, G
Witelski, TP
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Duke Univ, Ctr Nonlinear & Complex Syst, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词
D O I
10.1088/0951-7715/14/6/309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the influence of long-range attractive and short-range repulsive forces, thin liquid films rupture and form complex dewetting patterns. This paper studies this phenomenon in one space dimension within the framework of fourth-order degenerate parabolic equations of lubrication type. We derive the global structure of the bifurcation diagram for steady-state solutions. A stability analysis of the solution branches and numerical simulations suggest coarsening occurs. Furthermore, we study the behaviour of solutions in the limit that short-range repulsive forces are neglected. Both asymptotic analysis and numerical experiments show that this limit can concentrate mass in delta -distributions.
引用
收藏
页码:1569 / 1592
页数:24
相关论文
共 62 条
[21]  
Golubitsky M., 1985, SINGULARITIES GROUPS
[22]   ON DIPERNA-MAJDA CONCENTRATION SETS FOR TWO-DIMENSIONAL INCOMPRESSIBLE-FLOW [J].
GREENGARD, C ;
THOMANN, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :295-303
[23]   The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor [J].
Grinfeld, M ;
Novick-Cohen, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (06) :2375-2406
[24]  
Grisvard P., 1992, Singularities in Boundary Value Problems, V22
[25]   Simulation of singularities and instabilities arising in thin film flow [J].
Grün, G ;
Rumpf, M .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :293-320
[26]  
GRUN G, 2000, UNPUB CONVERGENCE EN
[27]  
GRUN G, 2001, IN PRESS P 15 GAMM S
[28]  
Grun G., 1995, Z. Anal. Anwendungen, V14, P541
[29]   Spinodal dewetting in liquid crystal and liquid metal films [J].
Herminghaus, S ;
Jacobs, K ;
Mecke, K ;
Bischof, J ;
Fery, A ;
Ibn-Elhaj, M ;
Schlagowski, S .
SCIENCE, 1998, 282 (5390) :916-919
[30]  
Holmes M, 1995, Introduction to Perturbation Methods