Average case analysis of dynamic geometric optimization

被引:8
作者
Eppstein, D [1 ]
机构
[1] UNIV CALIF IRVINE, DEPT INFORMAT & COMP SCI, IRVINE, CA 92717 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1996年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
dynamic geometric optimization; maximum spanning tree; farthest neighbor forest; rotating caliper graph; orthogonal range search; average case analysis;
D O I
10.1016/0925-7721(95)00018-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We maintain the maximum spanning tree of a planar point set, as points are inserted or deleted, in O(log(3) n) expected time per update in Mulmuley's average-case model of dynamic geometric computation. We use as subroutines dynamic algorithms for two other geometric graphs: the farthest neighbor forest and the rotating caliper graph related to an algorithm for static computation of point set widths and diameters. We maintain the former graph in expected time O(log(2) n) per update and the latter in expected time O(log n) per update. We also use the rotating caliper graph to maintain the diameter, width,, and minimum enclosing rectangle of a point set in expected time O(logn) per update. A subproblem uses a technique for average-case orthogonal range search that may also be of interest.
引用
收藏
页码:45 / 68
页数:24
相关论文
共 58 条
[51]   FULLY DYNAMIC POINT LOCATION IN A MONOTONE SUBDIVISION [J].
PREPARATA, FP ;
TAMASSIA, R .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :811-830
[52]   SKIP LISTS - A PROBABILISTIC ALTERNATIVE TO BALANCED TREES [J].
PUGH, W .
COMMUNICATIONS OF THE ACM, 1990, 33 (06) :668-676
[53]  
ROTE G, 1993, P 5 CAN C COMP GEOM, P258
[54]  
SCHWARZKOPF O, 1991, 32ND IEEE FOCS, P197
[55]   SMALL-DIMENSIONAL LINEAR-PROGRAMMING AND CONVEX HULLS MADE EASY [J].
SEIDEL, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :423-434
[56]  
SEIDEL R, 1990, 6TH P ANN ACM S COMP, P211
[57]   A DATA STRUCTURE FOR DYNAMIC TREES [J].
SLEATOR, DD ;
TARJAN, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1983, 26 (03) :362-391