BRD7, a Novel PBAF-specific SWI/SNF Subunit, Is Required for Target Gene Activation and Repression in Embryonic Stem Cells

被引:181
作者
Kaeser, Matthias D. [1 ]
Aslanian, Aaron [2 ]
Dong, Meng-Qiu [2 ]
Yates, John R., III [2 ]
Emerson, Beverly M. [1 ]
机构
[1] Salk Inst Biol Studies, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
基金
美国国家卫生研究院; 瑞士国家科学基金会;
关键词
D O I
10.1074/jbc.M806061200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The composition of chromatin-remodeling complexes dictates how these enzymes control transcriptional programs and cellular identity. In the present study we investigated the composition of SWI/SNF complexes in embryonic stem cells (ESCs). In contrast to differentiated cells, ESCs have a biased incorporation of certain paralogous SWI/SNF subunits with low levels of BRM, BAF170, and ARID1B. Upon differentiation, the expression of these subunits increases, resulting in a higher diversity of compositionally distinct SWI/SNF enzymes. We also identified BRD7 as a novel component of the Polybromo-associated BRG1-associated factor (PBAF) complex in both ESCs and differentiated cells. Using short hairpin RNA-mediated depletion of BRG1, we showed that SWI/SNF can function as both a repressor and an activator in pluripotent cells, regulating expression of developmental modifiers and signaling components such as Nodal, ADAMTS1, BMI-1, CRABP1, and thyroid releasing hormone. Knockdown studies of PBAF-specific BRD7 and of a signature subunit within the BAF complex, ARID1A, showed that these two subcomplexes affect SWI/SNF target genes differentially, in some cases even antagonistically. This may be due to their different biochemical properties. Finally we examined the role of SWI/SNF in regulating its target genes during differentiation. We found that SWI/SNF affects recruitment of components of the preinitiation complex in a promoter-specific manner to modulate transcription positively or negatively. Taken together, our results provide insight into the function of compositionally diverse SWI/SNF enzymes that underlie their inherent gene-specific mode of action.
引用
收藏
页码:32254 / 32263
页数:10
相关论文
共 60 条
[1]   REST repression of neuronal genes requires components of the hSWI-SNF complex [J].
Battaglioli, E ;
Andrés, ME ;
Rose, DW ;
Chenoweth, JG ;
Rosenfeld, MG ;
Anderson, ME ;
Mandel, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (43) :41038-41045
[2]   ATP-dependent nucleosomere modeling [J].
Becker, PB ;
Hörz, W .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :247-273
[3]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[4]   A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes [J].
Bultman, S ;
Gebuhr, T ;
Yee, D ;
La Mantia, C ;
Nicholson, J ;
Gilliam, A ;
Randazzo, F ;
Metzger, D ;
Chambon, P ;
Crabtree, G ;
Magnuson, T .
MOLECULAR CELL, 2000, 6 (06) :1287-1295
[5]   Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter (Publication with Expression of Concern) [J].
Cosma, MP ;
Tanaka, TU ;
Nasmyth, K .
CELL, 1999, 97 (03) :299-311
[6]   Remodeling plans for cellular specialization: unique styles for every room [J].
D Kaeser, Matthias ;
Emerson, Beverly M. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (05) :508-512
[7]   BRM (SNF2α) expression is concomitant to the onset of vasculogenesis in early mouse postimplantation development [J].
Dauvillier, S ;
Ott, MO ;
Renard, JP ;
Legouy, E .
MECHANISMS OF DEVELOPMENT, 2001, 101 (1-2) :221-225
[8]   Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers [J].
de la Serna, Ivana L. ;
Ohkawa, Yasuyuki ;
Imbalzano, Anthony N. .
NATURE REVIEWS GENETICS, 2006, 7 (06) :461-473
[9]   Global transcription in pluripotent embryonic stem cells [J].
Efroni, Sol ;
Duttagupta, Radharani ;
Cheng, Jill ;
Dehghani, Hesam ;
Hoeppner, Daniel J. ;
Dash, Chandravanu ;
Bazett-Jones, David P. ;
Le Grice, Stuart ;
McKay, Ronald D. G. ;
Buetow, Kenneth H. ;
Gingeras, Thomas R. ;
Misteli, Tom ;
Meshorer, Eran .
CELL STEM CELL, 2008, 2 (05) :437-447
[10]   An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity [J].
Fazzio, Thomas G. ;
Huff, Jason T. ;
Panning, Barbara .
CELL, 2008, 134 (01) :162-174