High-breakdown robust multivariate methods

被引:223
作者
Hubert, Mia [1 ,2 ]
Rousseeuw, Peter J. [3 ]
Van Aelst, Stefan [4 ]
机构
[1] Katholieke Univ Leuven, Univ Ctr Stat, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[4] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
breakdown value; influence function; multivariate statistics; outliers; partial least squares; principal components; regression; robustness;
D O I
10.1214/088342307000000087
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When applying a statistical method in practice it often occurs that some observations deviate from the usual assumptions. However, many classical methods are sensitive to outliers. The goal of robust statistics is to develop methods that are robust against the possibility that one or several unannounced outliers may occur anywhere in the data. These methods then allow to detect outlying observations by their residuals from a robust fit. We focus on high-breakdown methods, which can deal with a substantial fraction of outliers in the data. We give an overview of recent high-breakdown robust methods for multivariate settings such as covariance estimation, multiple and multivariate regression, discriminant analysis, principal components and multivariate calibration.
引用
收藏
页码:92 / 119
页数:28
相关论文
共 152 条
[71]   CONDITIONALLY UNBIASED BOUNDED-INFLUENCE ESTIMATION IN GENERAL REGRESSION-MODELS, WITH APPLICATIONS TO GENERALIZED LINEAR-MODELS [J].
KUNSCH, HR ;
STEFANSKI, LA ;
CARROLL, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :460-466
[72]  
Lemberge P, 2000, J CHEMOMETR, V14, P751, DOI 10.1002/1099-128X(200009/12)14:5/6<751::AID-CEM622>3.0.CO
[73]  
2-D
[74]   PROJECTION-PURSUIT APPROACH TO ROBUST DISPERSION MATRICES AND PRINCIPAL COMPONENTS - PRIMARY THEORY AND MONTE-CARLO [J].
LI, GY ;
CHEN, ZL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1985, 80 (391) :759-766
[75]  
Liu RY, 1999, ANN STAT, V27, P783
[76]   Robust principal component analysis for functional data [J].
N. Locantore ;
J. S. Marron ;
D. G. Simpson ;
N. Tripoli ;
J. T. Zhang ;
K. L. Cohen ;
Graciela Boente ;
Ricardo Fraiman ;
Babette Brumback ;
Christophe Croux ;
Jianqing Fan ;
Alois Kneip ;
John I. Marden ;
Daniel Peña ;
Javier Prieto ;
Jim O. Ramsay ;
Mariano J. Valderrama ;
Ana M. Aguilera ;
N. Locantore ;
J. S. Marron ;
D. G. Simpson ;
N. Tripoli ;
J. T. Zhang ;
K. L. Cohen .
Test, 1999, 8 (1) :1-73
[77]   Asymptotics of reweighted estimators of multivariate location and scatter [J].
Lopuhaä, HP .
ANNALS OF STATISTICS, 1999, 27 (05) :1638-1665
[78]   MULTIVARIATE TAU-ESTIMATORS FOR LOCATION AND SCATTER [J].
LOPUHAA, HP .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (03) :307-321
[80]   BREAKDOWN POINTS OF AFFINE EQUIVARIANT ESTIMATORS OF MULTIVARIATE LOCATION AND COVARIANCE MATRICES [J].
LOPUHAA, HP ;
ROUSSEEUW, PJ .
ANNALS OF STATISTICS, 1991, 19 (01) :229-248