Arsenic Trioxide Selectively Induces Early and Extensive Apoptosis via the APO2/Caspase-8 Pathway Engaging the Mitochondrial Pathway in Myeloma Cells with Mutant p53

被引:43
作者
Akay, Cagla [1 ]
Gazitt, Yair [1 ]
机构
[1] Univ Texas Hlth Sci Ctr San Antonio, Dept Med Hematol, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
关键词
Arsenic trioxide; Apoptosis; Myeloma; TRAIL; BID; AIF;
D O I
10.4161/cc.2.4.417
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Arsenic trioxide (ATO) is effective in the treatment of acute promyelocytic leukemia (APL) and induces apoptosis in APL cells and in a great variety of other cancer cells. We have previously shown that ATO induces apoptosis in myeloma cells in two different modes depending on p53 status in the cells. In cells expressing mutated p53, ATO induced, G(2)/M arrest and activation caspase 8 and 3 and rapid and extensive apoptosis. Myeloma cells expressing w.t. p53, ATO induced G(1) arrest and delayed apoptosis with activation of caspase 9 and 3. APO2/TRAIL receptor expression was induced in both cell types and APO2/TRAIL synergized with ATO in the induction of apoptosis. Here we tested the effect of ATO on mitochondrial membrane potential (MMP) in myeloma cells expressing mutated or w.t. p53. In myeloma cells expressing mutated p53, depolarization of MMP occurred early, concomitant with induction of APO2/TRAIL, activation of BID and release of AIF, preceding apoptosis. However, in cells expressing w.t. p53, APO2/TRAIL is not induced, BID is not cleaved and depolarization of MMP occurs concurrently with cytochrome c release and apoptosis. These results explain the greater sensitivity to ATO of cells with mutated p53 and suggest perhaps a general mechanism for ATO-induced apoptosis.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 75 条
[1]   Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro [J].
Akao, Y ;
Nakagawa, Y ;
Akiyama, K .
FEBS LETTERS, 1999, 455 (1-2) :59-62
[2]  
ALEXANIAN R, 1992, BLOOD, V80, P887
[3]   Safety and antitumor activity of recombinant soluble Apo2 ligand [J].
Ashkenazi, A ;
Pai, RC ;
Fong, S ;
Leung, S ;
Lawrence, DA ;
Masters, SA ;
Blackie, C ;
Chang, L ;
McMurtrey, AE ;
Hebert, A ;
DeForge, L ;
Koumenis, IL ;
Lewis, D ;
Harris, L ;
Bussiere, J ;
Koeppen, H ;
Shahrokh, Z ;
Schwall, RH .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (02) :155-162
[4]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[5]   A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma [J].
Attal, M ;
Harousseau, JL ;
Stoppa, AM ;
Sotto, JJ ;
Fuzibet, JG ;
Rossi, JF ;
Casassus, P ;
Maisonneuve, H ;
Facon, T ;
Ifrah, N ;
Payen, C ;
Bataille, R .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 335 (02) :91-97
[6]   Multiple roles of the tumor suppressor p53 [J].
Bargonetti, J ;
Manfredi, JJ .
CURRENT OPINION IN ONCOLOGY, 2002, 14 (01) :86-91
[7]   Sequential activation and inactivation of G2 checkpoints for selective killing of p53-deficient cells by microtubule-active drugs [J].
Blagosklonny, MV .
ONCOGENE, 2002, 21 (41) :6249-6254
[8]   Paradox of Bcl-2 (and p53): why may apoptosis-regulating proteins be irrelevant to cell death? [J].
Blagosklonny, MV .
BIOESSAYS, 2001, 23 (10) :947-953
[9]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[10]   Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia [J].
Cai, X ;
Shen, YL ;
Zhu, Q ;
Jia, PM ;
Yu, Y ;
Zhou, L ;
Huang, Y ;
Zhang, JW ;
Xiong, SM ;
Chen, SJ ;
Wang, ZY ;
Chen, Z ;
Chen, GQ .
LEUKEMIA, 2000, 14 (02) :262-270