Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz

被引:364
作者
Bazhanov, VV
Lukyanov, SL
Zamolodchikov, AB
机构
[1] AUSTRALIAN NATL UNIV,IAS,CTR MATH & APPLICAT,CANBERRA,ACT 0200,AUSTRALIA
[2] CORNELL UNIV,NEWMAN LAB,ITHACA,NY 14853
[3] RUTGERS STATE UNIV,DEPT PHYS & ASTRON,PISCATAWAY,NJ 08855
[4] LD LANDAU THEORET PHYS INST,CHERNOGOLOVKA 142432,RUSSIA
关键词
D O I
10.1007/BF02101898
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct the quantum versions of the monodromy matrices of KdV theory. The traces of these quantum monodromy matrices, which will be called as ''T-operators,'' act in highest weight Virasoro modules. The T-operators depend on the spectral parameter lambda and their expansion around lambda = infinity generates an infinite set of commuting Hamiltonians of the quantum KdV system. The T-operators can be viewed as the continuous field theory versions of the commuting transfermatrices of integrable lattice theory. In particular, we show that for the values c = 1 - 3(2n+1)2/2n+3 n = 1,2,3... of the Virasoro central charge the eigenvalues of the T-operators satisfy a closed system of functional equations sufficient for determining the spectrum. For the ground-state eigenvalue these functional equations are equivalent to those of the massless Thermodynamic Bethe Ansatz for the minimal conformal field theory M(2,2n+3); in general they provide a way to generalize the technique of the Thermodynamic Bethe Ansatz to the excited states. We discuss a generalization of our approach to the cases of massive field theories obtained by perturbing these Conformal Field Theories with the operator phi(1,3). The relation of these T-operators to the boundary states is also briefly described.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 48 条
[21]  
Fendley P., 1993, USC93022
[22]  
FENDLEY P, 1994, USC9416
[23]   S-MATRICES FOR PERTURBATIONS OF CERTAIN CONFORMAL FIELD-THEORIES [J].
FREUND, PGO ;
KLASSEN, TR ;
MELZER, E .
PHYSICS LETTERS B, 1989, 229 (03) :243-247
[24]   BOUNDARY S-MATRIX AND BOUNDARY STATE IN 2-DIMENSIONAL INTEGRABLE QUANTUM-FIELD THEORY [J].
GHOSHAL, S ;
ZAMOLODCHIKOV, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (21) :3841-3885
[25]  
ITZYKSON EC, 1988, CONFORMAL INVARIANCE
[26]  
KAC VG, 1979, LECTURE NOTES PHYSIC, V94, P441, DOI [DOI 10.1007/3-540-09238-2_102, 10.1007/3-540-09238-2_102]
[27]   FERMIONIC SUM REPRESENTATIONS FOR CONFORMAL FIELD-THEORY CHARACTERS [J].
KEDEM, R ;
KLASSEN, TR ;
MCCOY, BM ;
MELZER, E .
PHYSICS LETTERS B, 1993, 307 (1-2) :68-76
[28]   EXACT SOLUTION OF THE INTEGRABLE XXZ HEISENBERG-MODEL WITH ARBITRARY SPIN .1. THE GROUND-STATE AND THE EXCITATION SPECTRUM [J].
KIRILLOV, AN ;
RESHETIKHIN, NY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :1565-1585
[29]   SPECTRAL FLOW BETWEEN CONFORMAL FIELD-THEORIES IN 1 + 1 DIMENSIONS [J].
KLASSEN, TR ;
MELZER, E .
NUCLEAR PHYSICS B, 1992, 370 (03) :511-550
[30]   CONFORMAL WEIGHTS OF RSOS LATTICE MODELS AND THEIR FUSION HIERARCHIES [J].
KLUMPER, A ;
PEARCE, PA .
PHYSICA A, 1992, 183 (03) :304-350