Population genomics based on low coverage sequencing: how low should we go?

被引:166
作者
Buerkle, C. Alex [1 ,2 ]
Gompert, Zachariah [3 ]
机构
[1] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA
[2] Univ Wyoming, Program Ecol, Laramie, WY 82071 USA
[3] Texas State Univ, Dept Biol, San Marcos, TX USA
基金
美国国家科学基金会;
关键词
genotyping-by-sequencing; hierarchical Bayesian model; population genomics; resequencing; WIDE ASSOCIATION; NEXT-GENERATION; ADAPTATION; EVOLUTION; INFERENCE; DISCOVERY; SELECTION; GENETICS; MARKERS; POWER;
D O I
10.1111/mec.12105
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Research in molecular ecology is now often based on large numbers of DNA sequence reads. Given a time and financial budget for DNA sequencing, the question arises as to how to allocate the finite number of sequence reads among three dimensions: (i) sequencing individual nucleotide positions repeatedly and achieving high confidence in the true genotype of individuals, (ii) sampling larger numbers of individuals from a population, and (iii) sampling a larger fraction of the genome. Leaving aside the question of what fraction of the genome to sample, we analyze the trade-off between repeatedly sequencing the same nucleotide position (coverage depth) and the number of individuals in the sample. We review simple Bayesian models for allele frequencies and utilize these in the analysis of how to obtain maximal information about population genetic parameters. The models indicate that sampling larger numbers of individuals, at the expense of coverage depth per nucleotide position, provides more information about population parameters. Dividing the sequencing effort maximally among individuals and obtaining approximately one read per locus and individual (1xcoverage) yields the most information about a population. Some analyses require genetic parameters for individuals, in which case Bayesian population models also support inference from lower coverage sequence data than are required for simple likelihood models. Low coverage sequencing is not only sufficient to support inference, but it is optimal to design studies to utilize low coverage because they will yield highly accurate and precise parameter estimates based on more individuals or sites in the genome.
引用
收藏
页码:3028 / 3035
页数:8
相关论文
共 42 条
[1]   Multiplexed shotgun genotyping for rapid and efficient genetic mapping [J].
Andolfatto, Peter ;
Davison, Dan ;
Erezyilmaz, Deniz ;
Hu, Tina T. ;
Mast, Joshua ;
Sunayama-Morita, Tomoko ;
Stern, David L. .
GENOME RESEARCH, 2011, 21 (04) :610-617
[2]  
[Anonymous], COLD SPRING HARBOR P
[3]   Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers [J].
Baird, Nathan A. ;
Etter, Paul D. ;
Atwood, Tressa S. ;
Currey, Mark C. ;
Shiver, Anthony L. ;
Lewis, Zachary A. ;
Selker, Eric U. ;
Cresko, William A. ;
Johnson, Eric A. .
PLOS ONE, 2008, 3 (10)
[4]   Likelihood-based inference for genetic correlation coefficients [J].
Balding, DJ .
THEORETICAL POPULATION BIOLOGY, 2003, 63 (03) :221-230
[5]   Genome-wide analysis of a long-term evolution experiment with Drosophila [J].
Burke, Molly K. ;
Dunham, Joseph P. ;
Shahrestani, Parvin ;
Thornton, Kevin R. ;
Rose, Michael R. ;
Long, Anthony D. .
NATURE, 2010, 467 (7315) :587-U111
[6]   Whole-genome sequencing of multiple Arabidopsis thaliana populations [J].
Cao, Jun ;
Schneeberger, Korbinian ;
Ossowski, Stephan ;
Guenther, Torsten ;
Bender, Sebastian ;
Fitz, Joffrey ;
Koenig, Daniel ;
Lanz, Christa ;
Stegle, Oliver ;
Lippert, Christoph ;
Wang, Xi ;
Ott, Felix ;
Mueller, Jonas ;
Alonso-Blanco, Carlos ;
Borgwardt, Karsten ;
Schmid, Karl J. ;
Weigel, Detlef .
NATURE GENETICS, 2011, 43 (10) :956-U60
[7]   A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species [J].
Elshire, Robert J. ;
Glaubitz, Jeffrey C. ;
Sun, Qi ;
Poland, Jesse A. ;
Kawamoto, Ken ;
Buckler, Edward S. ;
Mitchell, Sharon E. .
PLOS ONE, 2011, 6 (05)
[8]  
Falush D, 2003, GENETICS, V164, P1567
[9]   A Genome-Scan Method to Identify Selected Loci Appropriate for Both Dominant and Codominant Markers: A Bayesian Perspective [J].
Foll, Matthieu ;
Gaggiotti, Oscar .
GENETICS, 2008, 180 (02) :977-993
[10]   The Next Generation of Molecular Markers From Massively Parallel Sequencing of Pooled DNA Samples [J].
Futschik, Andreas ;
Schloetterer, Christian .
GENETICS, 2010, 186 (01) :207-218