Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers

被引:2474
作者
Baird, Nathan A. [1 ]
Etter, Paul D. [1 ]
Atwood, Tressa S. [2 ]
Currey, Mark C. [3 ]
Shiver, Anthony L. [1 ]
Lewis, Zachary A. [1 ]
Selker, Eric U. [1 ]
Cresko, William A. [3 ]
Johnson, Eric A. [1 ]
机构
[1] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA
[2] Floragenex, Eugene, OR USA
[3] Univ Oregon, Ctr Ecol & Evolutionary Biol, Eugene, OR 97403 USA
来源
PLOS ONE | 2008年 / 3卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1371/journal.pone.0003376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single nucleotide polymorphism (SNP) discovery and genotyping are essential to genetic mapping. There remains a need for a simple, inexpensive platform that allows high-density SNP discovery and genotyping in large populations. Here we describe the sequencing of restriction-site associated DNA (RAD) tags, which identified more than 13,000 SNPs, and mapped three traits in two model organisms, using less than half the capacity of one Illumina sequencing run. We demonstrated that different marker densities can be attained by choice of restriction enzyme. Furthermore, we developed a barcoding system for sample multiplexing and fine mapped the genetic basis of lateral plate armor loss in threespine stickleback by identifying recombinant breakpoints in F(2) individuals. Barcoding also facilitated mapping of a second trait, a reduction of pelvic structure, by in silico re-sorting of individuals. To further demonstrate the ease of the RAD sequencing approach we identified polymorphic markers and mapped an induced mutation in Neurospora crassa. Sequencing of RAD markers is an integrated platform for SNP discovery and genotyping. This approach should be widely applicable to genetic mapping in a variety of organisms.
引用
收藏
页数:7
相关论文
共 18 条
  • [1] Genetic mapping with SNP markers in Drosophila
    Berger, J
    Suzuki, T
    Senti, KA
    Stubbs, J
    Schaffner, G
    Dickson, BJ
    [J]. NATURE GENETICS, 2001, 29 (04) : 475 - 481
  • [2] BOTSTEIN D, 1980, AM J HUM GENET, V32, P314
  • [3] Chen D, 2008, NAT METHODS, V5, P323, DOI [10.1038/NMETH.1191, 10.1038/nmeth.1191]
  • [4] Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles
    Colosimo, PF
    Hosemann, KE
    Balabhadra, S
    Villarreal, G
    Dickson, M
    Grimwood, J
    Schmutz, J
    Myers, RM
    Schluter, D
    Kingsley, DM
    [J]. SCIENCE, 2005, 307 (5717) : 1928 - 1933
  • [5] The genetic architecture of parallel armor plate reduction in threespine sticklebacks
    Colosimo, PF
    Peichel, CL
    Nereng, K
    Blackman, BK
    Shapiro, MD
    Schluter, D
    Kingsley, DM
    [J]. PLOS BIOLOGY, 2004, 2 (05): : 635 - 641
  • [6] Modified serial analysis of gene expression method for construction of gene expression profiles of microbial eukaryotic species
    Coyne, KJ
    Burkholder, JM
    Feldman, RA
    Hutchins, DA
    Cary, SC
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (09) : 5298 - 5304
  • [7] Cresko WA, 2004, P NATL ACAD SCI USA, V101, P6050, DOI 10.1073/pnas.0308479101
  • [8] Speed-mapping quantitative trait loci using microarrays
    Lai, Chao-Qiang
    Leips, Jeff
    Zou, Wei
    Roberts, Jessica F.
    Wollenberg, Kurt R.
    Parnell, Laurence D.
    Zeng, Zhao-Bang
    Ordovas, Jose M.
    Mackay, Trudy F. C.
    [J]. NATURE METHODS, 2007, 4 (10) : 839 - 841
  • [9] High-density detection of restriction-site-associated DNA markers for rapid mapping of mutated loci in neurospora
    Lewis, Zachary A.
    Shiver, Anthony L.
    Stiffler, Nicholas
    Miner, Michael R.
    Johnson, Eric A.
    Selker, Eric U.
    [J]. GENETICS, 2007, 177 (02) : 1163 - 1171
  • [10] RAD marker microarrays enable rapid mapping of zebrafish mutations
    Miller, Michael R.
    Atwood, Tressa S.
    Eames, B. Frank
    Eberhart, Johann K.
    Yan, Yi-Lin
    Postlethwait, John H.
    Johnson, Eric A.
    [J]. GENOME BIOLOGY, 2007, 8 (06)