Biogenesis of caveolae: a structural model for caveolin-induced domain formation

被引:221
作者
Parton, RG [1 ]
Hanzal-Bayer, M
Hancock, JF
机构
[1] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4067, Australia
[2] Univ Queensland, Ctr Microscopy & Microanalysis, St Lucia, Qld 4067, Australia
关键词
caveolae; cholesterol; membrane; model;
D O I
10.1242/jcs.02853
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Caveolae are striking morphological features of the plasma membrane of mammalian cells. Caveolins, the major proteins of caveolae, play a crucial role in the formation of these invaginations of the plasma membrane; however, the precise mechanisms involved are only just starting to be unravelled. Recent studies suggest that caveolae are stable structures first generated in the Golgi complex. Their formation and exit from the Golgi complex is associated with caveolin oligomerisation, acquisition of detergent insolubility, and association with cholesterol. Modelling of caveolin-membrane interactions together with in vitro studies of caveolin peptides are providing new insights into how caveolin-lipid interactions could generate the unique architecture of the caveolar domain.
引用
收藏
页码:787 / 796
页数:10
相关论文
共 87 条
[61]   The GxxxG motif: A framework for transmembrane helix-helix association [J].
Russ, WP ;
Engelman, DM .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (03) :911-919
[62]   Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation αC418W in Xenopus oocytes. [J].
Santiago, J ;
Guzmán, GR ;
Rojas, LV ;
Marti, R ;
Asmar-Rovira, GA ;
Santana, LF ;
McNamee, M ;
Lasalde-Dominicci, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (49) :46523-46532
[63]   OLIGOMERIC STRUCTURE OF CAVEOLIN - IMPLICATIONS FOR CAVEOLAE MEMBRANE ORGANIZATION [J].
SARGIACOMO, M ;
SCHERER, PE ;
TANG, ZL ;
KUBLER, E ;
SONG, KS ;
SANDERS, MC ;
LISANTI, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9407-9411
[64]   Caveolin-1 and -2 in the exocytic pathway of MDCK cells [J].
Scheiffele, P ;
Verkade, P ;
Fra, AM ;
Virta, H ;
Simons, K ;
Ikonen, E .
JOURNAL OF CELL BIOLOGY, 1998, 140 (04) :795-806
[65]   Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo [J].
Schubert, W ;
Frank, PG ;
Razani, B ;
Park, DS ;
Chow, CW ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (52) :48619-48622
[66]   Glycosphingolipids internalized via caveolar-related endocytosis rapidly merge with the clathrin pathway in early endosomes and form microdomains for recycling [J].
Sharma, DK ;
Choudhury, A ;
Singh, RD ;
Wheatley, CL ;
Marks, DL ;
Pagano, RE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (09) :7564-7572
[67]   Lipid rafts and signal transduction [J].
Simons, K ;
Toomre, D .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :31-39
[68]   Mutational analysis of the properties of caveolin-1 - A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions [J].
Song, KS ;
Tang, ZL ;
Li, SW ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (07) :4398-4403
[69]   The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation [J].
Sowa, G ;
Pypaert, M ;
Fulton, D ;
Sessa, WC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (11) :6511-6516
[70]   PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms [J].
Stan, RV ;
Tkachenko, E ;
Niesman, IR .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (08) :3615-3630