Nitrate transport in plants: which gene and which control?

被引:119
作者
Orsel, M
Filleur, S
Fraisier, V
Daniel-Vedele, F
机构
[1] INRA, Unit Nutr Azotee Plantes, F-78026 Versailles, France
[2] Univ Lancaster, Dept Sci Biol, Lancaster LA1 4YQ, England
[3] Inst Curie, CNRS, UMR 144, F-75248 Paris 05, France
关键词
mutant; multigene family; nitrate transporter; regulation;
D O I
10.1093/jexbot/53.370.825
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological level and, more recently, at the molecular level. Two classes of genes, NRT1 and NRT2, have been found to be potentially involve in the high and low affinity nitrate transport systems (HATS and LATS, respectively). The complexity of the molecular basis of nitrate uptake has been enhance by the finding that in many plants both NRT1 and NRT2 classes are represented by multigene families. Furthermore, recent studies demonstrate that the control mechanisms that lead to an active protein at the plasma membrane act on gene transcription, modulating the steady-state levels of mRNA, and on the activation of the protein, possibly by a phosphorylation/dephosphorylation process. This is a review of recent progress in the characterization of the NRT2 nitrate transporters, the composition of this family in Arabidopsis, their possible role in nitrate acquisition, and some aspects of their regulation in plants.
引用
收藏
页码:825 / 833
页数:9
相关论文
共 56 条
[1]   Regulation of GmNRT2 expression and nitrate transport activity in roots of soybean (Glycine max) [J].
Ranamalie Amarasinghe B.H.R. ;
De Bruxelles G.L. ;
Braddon M. ;
Onyeocha I. ;
Forde B.G. ;
Udvardi M.K. .
Planta, 1998, 206 (1) :44-52
[2]   COMPARATIVE KINETICS AND RECIPROCAL INHIBITION OF NITRATE AND NITRITE UPTAKE IN ROOTS OF UNINDUCED AND INDUCED BARLEY (HORDEUM-VULGARE L) SEEDLINGS [J].
ASLAM, M ;
TRAVIS, RL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1992, 99 (03) :1124-1133
[3]   INDUCTION OF A HIGH-CAPACITY NITRATE-UPTAKE MECHANISM IN BARLEY ROOTS PROMPTED BY NITRATE UPTAKE THROUGH A CONSTITUTIVE LOW-CAPACITY MECHANISM [J].
BEHL, R ;
TISCHNER, R ;
RASCHKE, K .
PLANTA, 1988, 176 (02) :235-240
[4]   Arabidopsis gene knockout:: phenotypes wanted [J].
Bouché, N ;
Bouchez, D .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (02) :111-117
[5]   Functional genomics in plants [J].
Bouchez, D ;
Höfte, H .
PLANT PHYSIOLOGY, 1998, 118 (03) :725-732
[6]   Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in arabidopsis [J].
Cerezo, M ;
Tillard, P ;
Filleur, S ;
Muños, S ;
Daniel-Vedele, F ;
Gojon, A .
PLANT PHYSIOLOGY, 2001, 127 (01) :262-271
[7]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395
[8]   Nitrate transport: a key step in nitrate assimilation [J].
Daniel-Vedele, F ;
Filleur, S ;
Caboche, M .
CURRENT OPINION IN PLANT BIOLOGY, 1998, 1 (03) :235-239
[9]  
Faure JD, 2001, NITROGEN ASSIMILATION BY PLANTS, P33
[10]   Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display [J].
Filleur, S ;
Daniel-Vedele, F .
PLANTA, 1999, 207 (03) :461-469