Modeling the effects of electrode composition and pore structure on the performance of electrochemical capacitors

被引:78
作者
Lin, CQ [1 ]
Popov, BN [1 ]
Ploehn, HJ [1 ]
机构
[1] Univ S Carolina, Swearingen Engn Ctr, Dept Chem Engn, Columbia, SC 29208 USA
关键词
D O I
10.1149/1.1431575
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work presents a mathematical model for charge/discharge of electrochemical capacitors that explicitly accounts for particle-packing effects in a composite electrochemical capacitor consisting of hydrous RuO2 nanoparticles dispersed within porous activated carbon. The model is also used to investigate the effect of nonuniform distributions of salt in the electrolyte phase of the electrode in the context of dilute solution theory. We use the model to compare the performance of capacitors with electrodes made from different activated carbons and to investigate the effects of varying carbon content and discharge current density. Even at low discharge current density, concentration polarization in the electrodes results in underutilization of the electrodes' charge-storage capability, and thus decreased performance. Among various types of activated carbons, those with large micropore surface areas and low meso- and macropore surface areas are preferred because they give high double-layer capacitance and favor efficient packing of RuO2 nanoparticles, thus maximizing faradaic pseudocapacitance. Increasing the electrode carbon content decreases the delivered charge and energy density, but the reductions are not severe at moderate carbon content and high discharge current. This suggests the possibility of optimizing the carbon content to minimize cost while achieving acceptable discharge performance. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A167 / A175
页数:9
相关论文
共 24 条
[21]  
Trasatti S., 1980, ELECTRODES CONDUCT A, P301
[22]   Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures [J].
Yu, AB ;
Zou, RP ;
Standish, N .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1996, 35 (10) :3730-3741
[23]   HYDROUS RUTHENIUM OXIDE AS AN ELECTRODE MATERIAL FOR ELECTROCHEMICAL CAPACITORS [J].
ZHENG, JP ;
CYGAN, PJ ;
JOW, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (08) :2699-2703
[24]   Ruthenium oxide-carbon composite electrodes for electrochemical capacitors [J].
Zheng, JP .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (08) :359-361