Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

被引:1911
作者
Crooks, GE [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.60.2721
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
There are only a very few known relations in statistical dynamics that are valid for systems driven arbitrarily far-from-equilibrium. One of these is the fluctuation theorem, which places conditions on the entropy production probability distribution of nonequilibrium systems. Another recently discovered far from equilibrium expression relates nonequilibrium measurements of the work done on a system to equilibrium free energy differences. In this paper, we derive a generalized version of the fluctuation theorem for stochastic, microscopically reversible dynamics. Invoking this generalized theorem provides a succinct proof of the nonequilibrium work relation. [S1063-651X(99)10109-0].
引用
收藏
页码:2721 / 2726
页数:6
相关论文
共 35 条
[1]  
AYTON G, CONDMAT9903409
[2]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[3]   IRREVERSIBILITY AND GENERALIZED NOISE [J].
CALLEN, HB ;
WELTON, TA .
PHYSICAL REVIEW, 1951, 83 (01) :34-40
[4]  
COHEN E, CONDMAT9903418
[5]   Dynamical ensembles in statistical mechanics [J].
Cohen, EGD .
PHYSICA A, 1997, 240 (1-2) :43-53
[6]   Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems [J].
Crooks, GE .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1481-1487
[7]  
De Groot SR, 2013, Non-Equilibrium Thermodynamics
[8]   PROBABILITY OF 2ND LAW VIOLATIONS IN SHEARING STEADY-STATES [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2401-2404
[9]   EQUILIBRIUM MICROSTATES WHICH GENERATE 2ND LAW VIOLATING STEADY-STATES [J].
EVANS, DJ ;
SEARLES, DJ .
PHYSICAL REVIEW E, 1994, 50 (02) :1645-1648
[10]   Steady states, invariant measures, and response theory [J].
Evans, DJ ;
Searles, DJ .
PHYSICAL REVIEW E, 1995, 52 (06) :5839-5848