R=0 spacetimes and self-dual Lorentzian wormholes

被引:77
作者
Dadhich, N
Kar, S
Mukherjee, S
Visser, M
机构
[1] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[2] Indian Inst Technol, Dept Phys, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol, Ctr Theoret Studies, Kharagpur 721302, W Bengal, India
[4] Univ N Bengal, Dept Phys, Siliguri 734430, WB, India
[5] Washington Univ, Dept Phys, St Louis, MO 63130 USA
关键词
D O I
10.1103/PhysRevD.65.064004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A two-parameter family of spherically symmetric, static Lorentzian wormholes is obtained as the general solution of the equation rho = rho(t) = 0, where rho = T(ij)u(i)u(j), rho(t) = (T-ij-1/2Tg(ij))u(i)u(j), and u(i)u(i) = -1. This equation characterizes a class of spacetimes which are "self-dual'' (in the sense of electrogravity duality). The class includes the Schwarzschild black hole, a family of naked singularities, and a disjoint family of Lorentzian wormholes, all of which have a vanishing scalar curvature (R=0). The properties of these spacetimes are discussed. Using isotropic coordinates we delineate clearly the domains of parameter space for which wormholes, nakedly singular spacetimes and the Schwarzschild black hole can be obtained. A model for the required "exotic'' stress-energy is discussed, and the notion of traversability for the wormholes is also examined.
引用
收藏
页数:7
相关论文
共 28 条
[11]   Chromaticity effects in microlensing by wormholes [J].
Eiroa, E ;
Romero, GE ;
Torres, DF .
MODERN PHYSICS LETTERS A, 2001, 16 (15) :973-983
[12]   NONPOSITIVITY OF ENERGY DENSITY IN QUANTIZED FIELD THEORIES [J].
EPSTEIN, H ;
GLASER, V ;
JAFFE, A .
NUOVO CIMENTO, 1965, 36 (03) :1016-+
[13]   VACUUM POLARIZATION IN A LOCALLY STATIC MULTIPLY CONNECTED SPACETIME AND A TIME-MACHINE PROBLEM [J].
FROLOV, VP .
PHYSICAL REVIEW D, 1991, 43 (12) :3878-3894
[14]   PHYSICAL EFFECTS IN WORMHOLES AND TIME MACHINES [J].
FROLOV, VP ;
NOVIKOV, ID .
PHYSICAL REVIEW D, 1990, 42 (04) :1057-1065
[15]   LORENTZIAN WORMHOLES IN HIGHER-ORDER GRAVITY THEORIES [J].
HOCHBERG, D .
PHYSICS LETTERS B, 1990, 251 (03) :349-354
[16]   Null energy condition in dynamic wormholes [J].
Hochberg, D ;
Visser, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (04) :746-749
[17]   Dynamic wormholes, antitrapped surfaces, and energy conditions [J].
Hochberg, D ;
Visser, M .
PHYSICAL REVIEW D, 1998, 58 (04)
[18]  
Hochberg D., GRQC9901020
[19]   Evolving Lorentzian wormholes [J].
Kar, S ;
Sahdev, D .
PHYSICAL REVIEW D, 1996, 53 (02) :722-730
[20]   EVOLVING WORMHOLES AND THE WEAK ENERGY CONDITION [J].
KAR, S .
PHYSICAL REVIEW D, 1994, 49 (02) :862-865