Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA

被引:251
作者
Cheng, Gong [1 ]
Guo, Lei [1 ]
Zhao, Tianyun [1 ]
Han, Junwei [1 ]
Li, Huihui [1 ]
Fang, Jun [1 ]
机构
[1] Northwestern Polytech Univ, Dept Control & Informat, Sch Automat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
MAXIMUM-LIKELIHOOD; TEXTURE; SCALE; IDENTIFICATION; REPRESENTATION; CATEGORIES;
D O I
10.1080/01431161.2012.705443
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Landslide detection from extensive remote-sensing imagery is an important preliminary work for landslide mapping, landslide inventories, and landslide hazard assessment. Aimed at development of an automatic procedure for landslide detection, a new method for automatic landslide detection from remote-sensing imagery is presented in this study. We achieved this objective using a scene classification method based on the bag-of-visual-words (BoVW) representation in combination with the unsupervised probabilistic latent semantic analysis (pLSA) model and the k-nearest neighbour (k-NN) classifier. Given a remote-sensing image, we divided it into equal-sized square sub-images and then described each sub-image as a BoVW representation. The pLSA model was applied to sub-images by using the BoVW representation to discover the object classes depicted in the sub-images, and then a k-NN classifier was used to classify the sub-images into landslide areas and non-landslide areas based on object distribution. We investigated the performance and applicability of the method using remote-sensing imagery from the Ili area. The results show that the method is robust and can produce good performance without the acquisition of three-dimensional (3D) topography. We anticipate that these results will be helpful in landslide inventory mapping and landslide hazard assessment in landslide-stricken areas.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 46 条