Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts

被引:118
作者
Kathe, SD [1 ]
Shen, GP [1 ]
Wallace, SS [1 ]
机构
[1] Univ Vermont, Dept Microbiol & Mol Genet, Markey Ctr Mol Genet, Burlington, VT 05405 USA
关键词
D O I
10.1074/jbc.M313598200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcription and repair of many DNA helix-distorting lesions such as cyclobutane pyrimidine dimers have been shown to be coupled in cells across phyla from bacteria to humans. The signal for transcription-coupled repair appears to be a stalled transcription complex at the lesion site. To determine whether oxidative DNA lesions can block correctly initiated human RNA polymerase II, we examined the effect of site-specifically introduced oxidative damages on transcription in HeLa cell nuclear extracts. We found that transcription was blocked by single-stranded breaks, common oxidative DNA lesions, when present in the transcribed strand of the transcription template. Cyclobutane pyrimidine dimers, which have been previously shown to block transcription both in vitro and in vivo, also blocked transcription in the HeLa cell nuclear transcription assay. In contrast, the oxidative DNA base lesions, 8-oxoguanine, 5-hydroxycytosine, and thymine glycol did not inhibit transcription, although pausing was observed with the thymine glycol lesion. Thus, DNA strand breaks but not oxidative DNA base damages blocked transcription by RNA polymerase II.
引用
收藏
页码:18511 / 18520
页数:10
相关论文
共 66 条
[1]   COCKAYNE SYNDROME FIBROBLASTS HAVE INCREASED SENSITIVITY TO ULTRAVIOLET-LIGHT BUT NORMAL RATES OF UNSCHEDULED DNA-SYNTHESIS [J].
ANDREWS, AD ;
BARRETT, SF ;
YODER, FW ;
ROBBINS, JH .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1978, 70 (05) :237-239
[2]   THE MULTIPLE ACTIVITIES OF ESCHERICHIA-COLI ENDONUCLEASE-IV AND THE EXTREME LABILITY OF 5'-TERMINAL BASE-FREE DEOXYRIBOSE 5-PHOSPHATES [J].
BAILLY, V ;
VERLY, WG .
BIOCHEMICAL JOURNAL, 1989, 259 (03) :761-768
[3]   MECHANISM OF DNA STRAND NICKING AT APURINIC APYRIMIDINIC SITES BY ESCHERICHIA-COLI [FORMAMIDOPYRIMIDINE]DNA GLYCOSYLASE [J].
BAILLY, V ;
VERLY, WG ;
OCONNOR, T ;
LAVAL, J .
BIOCHEMICAL JOURNAL, 1989, 262 (02) :581-589
[4]   The CBP co-activator is a histone acetyltransferase [J].
Bannister, AJ ;
Kouzarides, T .
NATURE, 1996, 384 (6610) :641-643
[5]   Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli [J].
Brégeon, D ;
Doddridge, ZA ;
You, HJ ;
Weiss, B ;
Doetsch, PW .
MOLECULAR CELL, 2003, 12 (04) :959-970
[6]  
CHEN YH, 1993, J BIOL CHEM, V268, P5849
[7]   ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor [J].
Citterio, E ;
Van Den Boom, V ;
Schnitzler, G ;
Kanaar, R ;
Bonte, E ;
Kingston, RE ;
Hoeijmakers, JHJ ;
Vermeulen, W .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (20) :7643-7653
[8]   RETRACTED: Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G (Retracted Article. See vol 308, pg 1740, 2005) [J].
Cooper, PK ;
Nouspikel, T ;
Clarkson, SG ;
Leadon, SA .
SCIENCE, 1997, 275 (5302) :990-993
[9]   TRANSCRIPT CLEAVAGE BY RNA-POLYMERASE-II ARRESTED BY A CYCLOBUTANE PYRIMIDINE DIMER IN THE DNA-TEMPLATE [J].
DONAHUE, BA ;
YIN, S ;
TAYLOR, JS ;
REINES, D ;
HANAWALT, PC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8502-8506
[10]   Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2 [J].
Dou, H ;
Mitra, S ;
Hazra, TK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (50) :49679-49684