A Method for Estimating Potential Seasonal Predictability: Analysis of Covariance

被引:9
作者
Feng, Xia [1 ]
DelSole, Timothy [2 ,3 ]
Houser, Paul [1 ]
机构
[1] George Mason Univ, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Atmospher Ocean & Earth Sci, Fairfax, VA 22030 USA
[3] Ctr Ocean Land Atmosphere Studies, Calverton, MD USA
基金
美国海洋和大气管理局; 美国国家航空航天局;
关键词
LONG-RANGE PREDICTABILITY; FINITE-SAMPLE SIZE; ARCTIC SEA-ICE; SURFACE-TEMPERATURE; SOIL-MOISTURE; INTERANNUAL VARIABILITY; ATMOSPHERIC RESPONSE; SUMMER RAINFALL; TIME-SERIES; METEOROLOGICAL STATISTICS;
D O I
10.1175/JCLI-D-11-00342.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper proposes a new method for assessing potential predictability of seasonal means using a single realization of daily time series. Potential predictability is defined as variability in seasonal means that exceeds the variability due to weather stochastic processes. The proposed method is based on analysis of covariance and accounts for autocorrelation in daily time series and uncertainties in statistical parameters. The method is applied to reanalyzed daily surface air temperature and detects significant potential predictability over the oceans and equatorial land areas. Potential predictability is weaker and varies significantly with season over extratropical land areas, with the fraction of potentially predictable variance rarely exceeding 60%. The proposed method also produces an estimate of the potentially predictable component of seasonal means, which can be used to investigate the relation between potential predictability and possible boundary forcings. The results are generally consistent with previous studies, although a more detailed study will be made in a future paper.
引用
收藏
页码:5292 / 5308
页数:17
相关论文
共 121 条
[61]  
2
[62]   Climate change projections for the twenty-first century and climate change commitment in the CCSM3 [J].
Meehl, Gerald A. ;
Washington, Warren M. ;
Santer, Benjamin D. ;
Collins, William D. ;
Arblaster, Julie M. ;
Hu, Aixue ;
Lawrence, David M. ;
Teng, Haiyan ;
Buja, Lawrence E. ;
Strand, Warren G. .
JOURNAL OF CLIMATE, 2006, 19 (11) :2597-2616
[63]   Optimal Estimation of the Climatological Mean [J].
Narapusetty, Balachandrudu ;
Delsole, Timothy ;
Tippett, Michael K. .
JOURNAL OF CLIMATE, 2009, 22 (18) :4845-4859
[64]  
NICHOLLS N, 1981, MON WEATHER REV, V109, P2435, DOI 10.1175/1520-0493(1981)109<2435:ASIATP>2.0.CO
[65]  
2
[66]   THE PROSPECTS FOR SEASONAL FORECASTING - A REVIEW PAPER [J].
PALMER, TN ;
ANDERSON, DLT .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1994, 120 (518) :755-793
[67]   Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER) [J].
Palmer, TN ;
Alessandri, A ;
Andersen, U ;
Cantelaube, P ;
Davey, M ;
Délécluse, P ;
Déqué, M ;
Díez, E ;
Doblas-Reyes, FJ ;
Feddersen, H ;
Graham, R ;
Gualdi, S ;
Guérémy, JF ;
Hagedorn, R ;
Hoshen, M ;
Keenlyside, N ;
Latif, M ;
Lazar, A ;
Maisonnave, E ;
Marletto, V ;
Morse, AP ;
Orfila, B ;
Rogel, P ;
Terres, JM ;
Thomson, MC .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2004, 85 (06) :853-+
[68]   A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability [J].
Peng, PT ;
Kumar, A .
JOURNAL OF CLIMATE, 2005, 18 (07) :1068-1085
[69]  
Phelps MW, 2004, J CLIMATE, V17, P3775, DOI 10.1175/1520-0442(2004)017<3775:PPITNC>2.0.CO
[70]  
2