Practical stabilization of receding-horizon control

被引:3
作者
Liu, BY [1 ]
Gui, WH [1 ]
Mu, M [1 ]
机构
[1] Cent S Univ, Coll Informat Sci & Engn, Changsha 410083, Peoples R China
来源
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY | 2001年 / 8卷 / 04期
关键词
receding-horizon control; practical stability; Lyapunov function; nonlinear system; optimization;
D O I
10.1007/s11771-001-0068-6
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The purpose of this work is to propose a scheme to stabilize the predictive control systems in the practical stability sense. In the paper, the authors dealt with a general discrete predictive control system x(j+1 \t) = f(x(j \t),up(j \t)) by using the Lyapunov direct method combining with receding-horizon control technique, and presented a new condition to guarantee the practical stabilization of the systems, With the proposed results, one can design the optimal controllers easily to practically stabilize the predictive control systems.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 1990, PRACTICAL STABILITY, DOI DOI 10.1142/1192
[2]   A stable one-step-ahead predictive control of non-linear systems [J].
Kambhampati, C ;
Mason, JD ;
Warwick, K .
AUTOMATICA, 2000, 36 (04) :485-495
[3]  
LIAO XX, 1993, ABSOLUTE STABILITY N
[4]  
LIAO XX, 2001, THEORY APPL STABILIT
[5]  
NICOLAO GD, 1998, IEEE T AUTOMATIC CON, V43, P1030
[6]  
NICOLAO GD, 1996, IEEE T AUTOMAT CONTR, V41, P451
[7]   Discrete-time stability with perturbations: Application to model predictive control [J].
Scokaert, POM ;
Rawlings, JB ;
Meadows, ES .
AUTOMATICA, 1997, 33 (03) :463-470
[8]   Suboptimal model predictive control (feasibility implies stability) [J].
Scokaert, POM ;
Mayne, DQ ;
Rawlings, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :648-654
[9]  
Xi Yugeng, 1999, Control Theory & Applications, V16, P118