Suboptimal model predictive control (feasibility implies stability)

被引:398
作者
Scokaert, POM [1 ]
Mayne, DQ
Rawlings, JB
机构
[1] Ctr Natl Etud Telecommun, F-38243 Meylan, France
[2] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
[3] Univ Wisconsin, Dept Chem Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
dual-mode control; nonconvex nonlinear optimization; nonlinear model predictive control; suboptimal control;
D O I
10.1109/9.751369
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Practical difficulties involved in implementing stabilizing model predictive control laws for nonlinear systems are well known, Stabilizing formulations of the method normally rely on the assumption that global and exact solutions of nonconvex, nonlinear optimization problems are possible in limited computational time, In this paper, we first establish conditions under which suboptimal model predictive control (MPC) controllers are stabilizing; the conditions are mild holding out the hope that many existing controllers remain stabilizing even if optimality is lost. Second, we present and analyze two suboptimal MPC schemes that are guaranteed to be stabilizing, provided an Initial feasible solution is available and fur which the computational requirements are more reasonable.
引用
收藏
页码:648 / 654
页数:7
相关论文
共 11 条
[1]   Dual-Receding Horizon Control of Constrained Discrete Time Systems [J].
Chisci, L. ;
Lombardi, A. ;
Mosca, E. .
EUROPEAN JOURNAL OF CONTROL, 1996, 2 (04) :278-285
[2]   On constrained infinite-time linear quadratic optimal control [J].
Chmielewski, D ;
Manousiouthakis, V .
SYSTEMS & CONTROL LETTERS, 1996, 29 (03) :121-129
[3]   LINEAR-SYSTEMS WITH STATE AND CONTROL CONSTRAINTS - THE THEORY AND APPLICATION OF MAXIMAL OUTPUT ADMISSIBLE-SETS [J].
GILBERT, EG ;
TAN, KT .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) :1008-1020
[4]   OPTIMAL INFINITE-HORIZON FEEDBACK LAWS FOR A GENERAL-CLASS OF CONSTRAINED DISCRETE-TIME-SYSTEMS - STABILITY AND MOVING-HORIZON APPROXIMATIONS [J].
KEERTHI, SS ;
GILBERT, EG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 57 (02) :265-293
[5]   RECEDING HORIZON CONTROL OF NONLINEAR-SYSTEMS [J].
MAYNE, DQ ;
MICHALSKA, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (07) :814-824
[6]  
Mayne DQ, 1997, P 5 INT C CHEM PROC, P217
[7]   ROBUST RECEDING HORIZON CONTROL OF CONSTRAINED NONLINEAR-SYSTEMS [J].
MICHALSKA, H ;
MAYNE, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (11) :1623-1633
[8]   THE STABILITY OF CONSTRAINED RECEDING HORIZON CONTROL [J].
RAWLINGS, JB ;
MUSKE, KR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (10) :1512-1516
[9]  
Scokaert P.O.M., 1996, P 13 IFAC WORLD C SA, VM, P109
[10]  
STAUS GH, 1996, NONCONVEX OPTIMIZATI, P1