CILIA: MULTIFUNCTIONAL ORGANELLES AT THE CENTER OF VERTEBRATE LEFT-RIGHT ASYMMETRY

被引:101
作者
Basu, Basudha [1 ]
Bruedner, Martina [1 ,2 ]
机构
[1] Yale Univ, Sch Med, Dept Pediat, New Haven, CT 06510 USA
[2] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06510 USA
来源
CILIARY FUNCTION IN MAMMALIAN DEVELOPMENT | 2008年 / 85卷
关键词
D O I
10.1016/S0070-2153(08)00806-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cilia establish the vertebrate left-right (LR) axis and are integral to the development and function of the kidney, liver, and brain. Left-right asymmetry is established in the ciliated ventral node cells of the mouse. The chiral structure of the cilium provides a reference asymmetry to impose handed LR asymmetric development on the bilaterally symmetric vertebrate embryo. A ciliary mechanism of LR development is evolutionarily conserved, as ciliated organs essential to LR axis formation, called LR organizers, are found in other vertebrates, including rabbit, fish, and Xenopus. Mice with mutations affecting ciliary biogenesis, motility, or sensory function have abnormal LR development and abnormal development of the heart. The axonemal dynein heavy chain left-right dynein (lrd) localizes to the LR organizer and drives counterclockwise movement of node primary cilia. Node primary cilia are an admixture of 9 + 2 and 9 + 0 cilia. Mutations in Ird result in structurally normal, immotile node monocilia. In the mouse, coordinated, directional beating of motile node monocilia at the neural fold stage generates leftward flow of extraembryonic fluid surrounding the node (nodal flow). Nodal flow triggers a rise in intracellular calcium in cells at the left side of the node. The perinodal asymmetric rise in intracellular calcium generated by nodal flow subsequently leads to asymmetric gene expression and morphogenesis.
引用
收藏
页码:151 / 174
页数:24
相关论文
共 99 条
[71]   Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates [J].
Rana, AA ;
Barbera, JPM ;
Rodriguez, TA ;
Lynch, D ;
Hirst, E ;
Smith, JC ;
Beddington, RSP .
DEVELOPMENT, 2004, 131 (20) :4999-5007
[72]   Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination [J].
Raya, A ;
Kawakami, Y ;
Rodríguez-Esteban, C ;
Ibañes, M ;
Rasskin-Gutman, D ;
Rodríguez-León, J ;
Büscher, D ;
Feijo, J ;
Belmonte, JCI .
NATURE, 2004, 427 (6970) :121-128
[73]   Inositol polyphosphates regulate zebrafish left-right asymmetry [J].
Sarmah, B ;
Latimer, AJ ;
Appel, B ;
Wente, SR .
DEVELOPMENTAL CELL, 2005, 9 (01) :133-145
[74]   The homeobox gene NKX3.2 is a target of left-right signalling and is expressed on opposite sides in chick and mouse embryos [J].
Schneider, A ;
Mijalski, T ;
Schlange, T ;
Dai, WL ;
Overbeek, P ;
Arnold, HH ;
Brand, T .
CURRENT BIOLOGY, 1999, 9 (16) :911-914
[75]   Calcium fluxes in dorsal forerunner cells antagonize β-catenin and alter left-right patterning [J].
Schneider, Igor ;
Houston, Douglas W. ;
Rebagliati, Michael R. ;
Slusarski, Diane C. .
DEVELOPMENT, 2008, 135 (01) :75-84
[76]   Cilia-driven leftward flow determines laterality in Xenopus [J].
Schweickert, Axel ;
Weber, Thomas ;
Beyer, Tina ;
Vick, Philipp ;
Bogusch, Susanne ;
Feistel, Kerstin ;
Blum, Martin .
CURRENT BIOLOGY, 2007, 17 (01) :60-66
[77]   Na, K-ATPase α2 and Ncx4a regulate zebrafish left-right patterning [J].
Shu, Xiaodong ;
Huang, Jie ;
Dong, Yuan ;
Choi, Jayoung ;
Langenbacher, Adam ;
Chen, Jau-Nian .
DEVELOPMENT, 2007, 134 (10) :1921-1930
[78]   Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways [J].
Simons, M ;
Gloy, J ;
Ganner, A ;
Bullerkotte, A ;
Bashkurov, M ;
Krönig, C ;
Schermer, B ;
Benzing, T ;
Cabello, OA ;
Jenny, A ;
Mlodzik, M ;
Polok, B ;
Driever, W ;
Obara, T ;
Walz, G .
NATURE GENETICS, 2005, 37 (05) :537-543
[79]   Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis [J].
Slough, Jennifer ;
Cooney, Laura ;
Brueckner, Martina .
DEVELOPMENTAL DYNAMICS, 2008, 237 (09) :2304-2314
[80]   MORPHOGENESIS OF THE MURINE NODE AND NOTOCHORDAL PLATE [J].
SULIK, K ;
DEHART, DB ;
INAGAKI, T ;
CARSON, JL ;
VRABLIC, T ;
GESTELAND, K ;
SCHOENWOLF, GC .
DEVELOPMENTAL DYNAMICS, 1994, 201 (03) :260-278