Translesion synthesis of acetylaminofluorene-dG adducts by DNA polymerase ζ is stimulated by yeast Rev1 protein

被引:22
作者
Guo, DY [1 ]
Xie, ZW [1 ]
Shen, HY [1 ]
Zhao, B [1 ]
Wang, ZG [1 ]
机构
[1] Univ Kentucky, Grad Ctr Toxicol, Lexington, KY 40536 USA
关键词
D O I
10.1093/nar/gkh279
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translesion synthesis is an important mechanism in response to unrepaired DNA lesions during replication. The DNA polymerase (Pole) mutagenesis pathway is a major error-prone translesion synthesis mechanism requiring Polzeta and Rev1. In addition to its dCMP transferase, a non-catalytic function of Rev1 is suspected in cellular response to certain types of DNA lesions. However, it is not well understood about the non-catalytic function of Rev1 in translesion synthesis. We have analyzed the role of Rev1 in translesion synthesis of an acetylaminofluorene (AAF)-dG DNA adduct. Purified yeast Rev1 was essentially unresponsive to a template AAF-dG DNA adduct, in contrast to its efficient C insertion opposite a template 1,M-ethenoadenine adduct. Purified yeast Polzeta was very inefficient in the bypass of the AAF-dG adduct. Combining Rev1 and Polzeta, however, led to a synergistic effect on translesion synthesis. Rev1 protein enhanced Polzeta-catalyzed nucleotide insertion opposite the AAF-dG adduct and strongly stimulated Polzeta-catalyzed extension from opposite the lesion. Rev1 also stimulated the deficient synthesis by Polzeta at the very end of undamaged DNA templates. Deleting the C-terminal 205 aa of Rev1 did not affect its dCMP transferase activity, but abolished its stimulatory activity on Polzeta-catalyzed extension from opposite the AAF-dG adduct. These results suggest that translesion synthesis of AAF-dG adducts by Polzeta is stimulated by Rev1 protein in yeast. Consistent with the in vitro results, both Polzeta and Rev1 were found to be equally important for error-prone translesion synthesis across from AAF-dG DNA adducts in yeast cells.
引用
收藏
页码:1122 / 1130
页数:9
相关论文
共 33 条
[1]   Analysis of damage tolerance pathways in Saccharomyces cerevisiae:: a requirement for Rev3 DNA polymerase in translesion synthesis [J].
Baynton, K ;
Bresson-Roy, A ;
Fuchs, RPP .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (02) :960-966
[2]   Distinct roles for Rev1p and Rev7p during translesion synthesis in Saccharomyces cerevisiae [J].
Baynton, K ;
Bresson-Roy, A ;
Fuchs, RPP .
MOLECULAR MICROBIOLOGY, 1999, 34 (01) :124-133
[3]   Lesion bypass in yeast cells:: Pol η participates in a multi-DNA polymerase process [J].
Bresson, A ;
Fuchs, RPP .
EMBO JOURNAL, 2002, 21 (14) :3881-3887
[4]   A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ [J].
Gibbs, PEM ;
McGregor, WG ;
Maher, VM ;
Nisson, P ;
Lawrence, CW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :6876-6880
[5]   The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light [J].
Gibbs, PEM ;
Wang, XD ;
Li, ZQ ;
McManus, TP ;
McGregor, WG ;
Lawrence, CW ;
Maher, VM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (08) :4186-4191
[6]   Translesion synthesis by yeast DNA polymerase ζ from templates containing lesions of ultraviolet radiation and acetylaminofluorene [J].
Guo, DY ;
Wu, XH ;
Rajpal, DK ;
Taylor, JS ;
Wang, ZG .
NUCLEIC ACIDS RESEARCH, 2001, 29 (13) :2875-2883
[7]   Yeast Rev1 protein is a G template-specific DNA polymerase [J].
Haracska, L ;
Prakash, S ;
Prakash, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (18) :15546-15551
[8]   Translesion synthesis past platinum DNA adducts by human DNA polymerase μ [J].
Havener, JM ;
McElhinny, SAN ;
Bassett, E ;
Gauger, M ;
Ramsden, DA ;
Chaney, SG .
BIOCHEMISTRY, 2003, 42 (06) :1777-1788
[9]   Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions [J].
Johnson, RE ;
Washington, MT ;
Haracska, L ;
Prakash, S ;
Prakash, L .
NATURE, 2000, 406 (6799) :1015-1019
[10]   THE REV1 GENE OF SACCHAROMYCES-CEREVISIAE - ISOLATION, SEQUENCE, AND FUNCTIONAL-ANALYSIS [J].
LARIMER, FW ;
PERRY, JR ;
HARDIGREE, AA .
JOURNAL OF BACTERIOLOGY, 1989, 171 (01) :230-237