Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment

被引:500
作者
Prosser, James I. [1 ]
Nicol, Graeme W. [1 ]
机构
[1] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland
基金
英国自然环境研究理事会;
关键词
D O I
10.1111/j.1462-2920.2008.01775.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Traditionally, organisms responsible for major biogeochemical cycling processes have been determined by physiological characterization of environmental isolates in laboratory culture. Molecular techniques have, however, confirmed the widespread occurrence of abundant bacterial and archaeal groups with no cultivated representative, making it difficult to determine their ecosystem function. Until recently, ammonia oxidation, the first step in the globally important process of nitrification, was thought to be performed almost exclusively by bacteria. Metagenome studies, followed by laboratory isolation, then demonstrated the potential for significant ammonia oxidation by mesophilic crenarchaea, whose ecosystem function was previously unknown. Re-assessment of the role of bacteria in ammonia oxidation is now required and this article reviews the current evidence for the relative importance of bacteria and archaea. Much of this evidence is based on metagenomic analysis and molecular techniques for estimation of gene and gene transcript abundance, changes in ammonia oxidizer community structure during active nitrification and phylogeny of natural communities. These studies have been complemented by physiological characterization of a laboratory isolate and by incorporation of labelled substrates. Data from these studies provide increasingly convincing evidence for the importance of archaeal ammonia oxidizers in the global nitrogen cycle. They also highlight the need to re-assess the importance of ammonia-oxidizing bacteria, the requirement and limitations of molecular techniques in linking specific microbial groups to ecosystem function and the limitations of reliance on laboratory cultures.
引用
收藏
页码:2931 / 2941
页数:11
相关论文
共 39 条
[1]   Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico [J].
Beman, J. Michael ;
Francis, Christopher A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (12) :7767-7777
[2]   Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals [J].
Beman, J. Michael ;
Roberts, Kathryn J. ;
Wegley, Linda ;
Rohwer, Forest ;
Francis, Christopher A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (17) :5642-5647
[3]   Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota [J].
Brochier-Armanet, Celine ;
Boussau, Bastien ;
Gribaldo, Simonetta ;
Forterre, Patrick .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (03) :245-252
[4]   Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria [J].
Cantera, J. Jason L. ;
Stein, Lisa Y. .
ENVIRONMENTAL MICROBIOLOGY, 2007, 9 (03) :765-776
[5]   Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol [J].
de la Torre, Jose R. ;
Walker, Christopher B. ;
Ingalls, Anitra E. ;
Koenneke, Martin ;
Stahl, David A. .
ENVIRONMENTAL MICROBIOLOGY, 2008, 10 (03) :810-818
[6]   Everything in moderation: Archaea as 'non-extremophiles' [J].
DeLong, EF .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (06) :649-654
[7]   Stable isotope probing - linking microbial identity to function [J].
Dumont, MG ;
Murrell, JC .
NATURE REVIEWS MICROBIOLOGY, 2005, 3 (06) :499-504
[8]   Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J].
Francis, CA ;
Roberts, KJ ;
Beman, JM ;
Santoro, AE ;
Oakley, BB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (41) :14683-14688
[9]   New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation [J].
Francis, Christopher A. ;
Beman, J. Michael ;
Kuypers, Marcel M. M. .
ISME JOURNAL, 2007, 1 (01) :19-27
[10]   Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient [J].
Freitag, TE ;
Chang, L ;
Prosser, JI .
ENVIRONMENTAL MICROBIOLOGY, 2006, 8 (04) :684-696