Effects of transport memory and nonlinear damping in a generalized Fisher's equation

被引:58
作者
Abramson, G [1 ]
Bishop, AR
Kenkre, VM
机构
[1] Univ New Mexico, Ctr Adv Studies, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[6] Consejo Nacl Invest Cient & Tecn, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.64.066615
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Memory effects in transport require, for their incorporation into reaction-diffusion investigations, a generalization of traditional equations. The well-known Fisher's equation, which combines diffusion with a logistic nonlinearity, is generalized to include memory effects, and traveling wave solutions of the equation are found. Comparison is made with alternative generalization procedures.
引用
收藏
页数:6
相关论文
共 20 条
[11]   MAGUMOS EQUATION [J].
MCKEAN, HP .
ADVANCES IN MATHEMATICS, 1970, 4 (03) :209-&
[12]  
Mikhailov AS, 1994, FDN SYNERGETICS
[13]  
MORSE PM, 1953, METHODS THEORETICAL, V1, P865
[14]  
Murray J. D., 1993, MATH BIOL, DOI DOI 10.1007/978-3-662-08542-4
[15]  
OHTA T, 1989, PROG THEOR PHYS SUPP, P425, DOI 10.1143/PTPS.99.425
[16]   HIGHER-DIMENSIONAL LOCALIZED PATTERNS IN EXCITABLE MEDIA [J].
OHTA, T ;
MIMURA, M ;
KOBAYASHI, R .
PHYSICA D, 1989, 34 (1-2) :115-144
[17]   SELF-ORGANIZATION IN AN EXCITABLE REACTION-DIFFUSION SYSTEM - SYNCHRONIZATION OF OSCILLATORY DOMAINS IN ONE DIMENSION [J].
OHTA, T ;
ITO, A ;
TETSUKA, A .
PHYSICAL REVIEW A, 1990, 42 (06) :3225-3232
[18]   AN ELECTROTHERMAL INSTABILITY - THE INFLUENCE OF ALBEDO BOUNDARY-CONDITIONS ON THE STATIONARY STATES OF AN EXACTLY SOLVABLE MODEL [J].
SCHAT, C ;
WIO, HS .
PHYSICA A, 1992, 180 (3-4) :295-308